{"title":"用于图像理解的语法","authors":"N. Ahuja","doi":"10.1109/CVPRW.2009.5204337","DOIUrl":null,"url":null,"abstract":"We consider one of the most basic questions in computer vision, that of finding a low-level image representation that could be used to seed diverse, subsequent computations of image understanding. Can we define a relatively general purpose image representation which would serve as the syntax for diverse needs of image understanding? What makes good image syntax? How do we evaluate it? We pose a series of such questions and evolve a set of answers to them, which in turn help evolve an image representation. For concreteness, we first perform this exercise in the specific context of the following problem.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"148 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A syntax for image understanding\",\"authors\":\"N. Ahuja\",\"doi\":\"10.1109/CVPRW.2009.5204337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider one of the most basic questions in computer vision, that of finding a low-level image representation that could be used to seed diverse, subsequent computations of image understanding. Can we define a relatively general purpose image representation which would serve as the syntax for diverse needs of image understanding? What makes good image syntax? How do we evaluate it? We pose a series of such questions and evolve a set of answers to them, which in turn help evolve an image representation. For concreteness, we first perform this exercise in the specific context of the following problem.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"148 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了计算机视觉中最基本的问题之一,即找到一个低级别的图像表示,可以用来为图像理解的各种后续计算提供种子。我们能否定义一个相对通用的图像表示,作为图像理解不同需求的语法?什么是好的图像语法?我们如何评估它?我们提出了一系列这样的问题,并进化出一套答案,这反过来又有助于进化出一种图像表示。为了具体起见,我们首先在下面这个问题的具体背景下进行这个练习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A syntax for image understanding
We consider one of the most basic questions in computer vision, that of finding a low-level image representation that could be used to seed diverse, subsequent computations of image understanding. Can we define a relatively general purpose image representation which would serve as the syntax for diverse needs of image understanding? What makes good image syntax? How do we evaluate it? We pose a series of such questions and evolve a set of answers to them, which in turn help evolve an image representation. For concreteness, we first perform this exercise in the specific context of the following problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1