时间同步安全性的后续步骤:来自实现IEEE 1588 v2.1的经验

Ezzeldin Shereen, Florian Bitard, G. Dán, Tolga Sel, S. Fries
{"title":"时间同步安全性的后续步骤:来自实现IEEE 1588 v2.1的经验","authors":"Ezzeldin Shereen, Florian Bitard, G. Dán, Tolga Sel, S. Fries","doi":"10.1109/ISPCS.2019.8886641","DOIUrl":null,"url":null,"abstract":"The lack of integrated support for security has been a major shortcoming of Precision Time Protocol version 2 (PTPv2) for a long time. The upcoming PTPv2.1 aims at addressing this shortcoming in a variety of ways, including the introduction of lightweight message authentication. In this paper we provide an overview of the planned security features, and report results based on an implementation of the proposed integrated security mechanism based on the open source Linux PTP, including support for hardware timestamping. Our implementation includes an extension of Linux PTP to support transparent clocks. We provide results from an experimental testbed including a transparent clock, which illustrate that the extensions can be implemented in software at a low computational overhead, while supporting hardware timestamping. We also provide a discussion of the remaining vulnerabilities of PTP time synchronization, propose countermeasures, and discuss options for key management, which is not covered by the standard.","PeriodicalId":193584,"journal":{"name":"2019 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Next Steps in Security for Time Synchronization: Experiences from implementing IEEE 1588 v2.1\",\"authors\":\"Ezzeldin Shereen, Florian Bitard, G. Dán, Tolga Sel, S. Fries\",\"doi\":\"10.1109/ISPCS.2019.8886641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lack of integrated support for security has been a major shortcoming of Precision Time Protocol version 2 (PTPv2) for a long time. The upcoming PTPv2.1 aims at addressing this shortcoming in a variety of ways, including the introduction of lightweight message authentication. In this paper we provide an overview of the planned security features, and report results based on an implementation of the proposed integrated security mechanism based on the open source Linux PTP, including support for hardware timestamping. Our implementation includes an extension of Linux PTP to support transparent clocks. We provide results from an experimental testbed including a transparent clock, which illustrate that the extensions can be implemented in software at a low computational overhead, while supporting hardware timestamping. We also provide a discussion of the remaining vulnerabilities of PTP time synchronization, propose countermeasures, and discuss options for key management, which is not covered by the standard.\",\"PeriodicalId\":193584,\"journal\":{\"name\":\"2019 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPCS.2019.8886641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPCS.2019.8886641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

长期以来,缺乏对安全性的集成支持一直是精确时间协议版本2 (PTPv2)的一个主要缺点。即将发布的PTPv2.1旨在通过各种方式解决这个缺点,包括引入轻量级消息身份验证。在本文中,我们概述了计划的安全特性,并报告了基于开源Linux PTP的拟议集成安全机制的实现结果,包括对硬件时间戳的支持。我们的实现包括Linux PTP的扩展,以支持透明时钟。我们提供了一个包含透明时钟的实验测试平台的结果,表明该扩展可以在软件中以较低的计算开销实现,同时支持硬件时间戳。我们还讨论了PTP时间同步的剩余漏洞,提出了对策,并讨论了密钥管理的选项,这在标准中没有涵盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Next Steps in Security for Time Synchronization: Experiences from implementing IEEE 1588 v2.1
The lack of integrated support for security has been a major shortcoming of Precision Time Protocol version 2 (PTPv2) for a long time. The upcoming PTPv2.1 aims at addressing this shortcoming in a variety of ways, including the introduction of lightweight message authentication. In this paper we provide an overview of the planned security features, and report results based on an implementation of the proposed integrated security mechanism based on the open source Linux PTP, including support for hardware timestamping. Our implementation includes an extension of Linux PTP to support transparent clocks. We provide results from an experimental testbed including a transparent clock, which illustrate that the extensions can be implemented in software at a low computational overhead, while supporting hardware timestamping. We also provide a discussion of the remaining vulnerabilities of PTP time synchronization, propose countermeasures, and discuss options for key management, which is not covered by the standard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploiting Smartphone Peripherals for Precise Time Synchronization Are Cloud Services Aware of Time? An Experimental Analysis oriented to Industry 4.0 Test Results of IEEE 1588v2 Network Synchronization Holdover Performance using Various Types of Reference Oscillators A timing impairment module for electrical synchrometrology Insitu determination of the fiber delay coefficient in time-dissemination networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1