用非线性主成分分析的子空间表示图像特征

Xiang-Yan Zeng, Yenwei Chen, Z. Nakao
{"title":"用非线性主成分分析的子空间表示图像特征","authors":"Xiang-Yan Zeng, Yenwei Chen, Z. Nakao","doi":"10.1109/ICPR.2002.1048280","DOIUrl":null,"url":null,"abstract":"In subspace pattern recognition, the basis vectors represent the features of the data and define the class. In the previous works, the standard principal component analysis is used to derive the basis vectors. Compared with the standard PCA, a nonlinear PCA can provide the high-order statistics and result in non-orthogonal basis vectors. We combine a nonlinear PCA and a subspace classifier to extract the edge and line features in an image. The simulation results indicate that the basis vectors from the nonlinear PCA can classify the edge patterns better than those from a linear PCA.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Image feature representation by the subspace of nonlinear PCA\",\"authors\":\"Xiang-Yan Zeng, Yenwei Chen, Z. Nakao\",\"doi\":\"10.1109/ICPR.2002.1048280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In subspace pattern recognition, the basis vectors represent the features of the data and define the class. In the previous works, the standard principal component analysis is used to derive the basis vectors. Compared with the standard PCA, a nonlinear PCA can provide the high-order statistics and result in non-orthogonal basis vectors. We combine a nonlinear PCA and a subspace classifier to extract the edge and line features in an image. The simulation results indicate that the basis vectors from the nonlinear PCA can classify the edge patterns better than those from a linear PCA.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在子空间模式识别中,基向量表示数据的特征并定义类。在以前的工作中,使用标准主成分分析来推导基向量。与标准主成分分析相比,非线性主成分分析可以提供高阶统计量,并产生非正交基向量。我们结合非线性主成分分析和子空间分类器来提取图像中的边缘和直线特征。仿真结果表明,非线性主成分分析的基向量比线性主成分分析的基向量能更好地对边缘模式进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image feature representation by the subspace of nonlinear PCA
In subspace pattern recognition, the basis vectors represent the features of the data and define the class. In the previous works, the standard principal component analysis is used to derive the basis vectors. Compared with the standard PCA, a nonlinear PCA can provide the high-order statistics and result in non-orthogonal basis vectors. We combine a nonlinear PCA and a subspace classifier to extract the edge and line features in an image. The simulation results indicate that the basis vectors from the nonlinear PCA can classify the edge patterns better than those from a linear PCA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pattern recognition for humanitarian de-mining Data clustering using evidence accumulation Facial expression recognition using pseudo 3-D hidden Markov models Speeding up SVM decision based on mirror points Real-time tracking and estimation of plane pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1