用于自动广播制作的高分辨率全景视频中的实时人物跟踪

Rene Kaiser, M. Thaler, Andreas Kriechbaum, Hannes Fassold, W. Bailer, Jakub Rosner
{"title":"用于自动广播制作的高分辨率全景视频中的实时人物跟踪","authors":"Rene Kaiser, M. Thaler, Andreas Kriechbaum, Hannes Fassold, W. Bailer, Jakub Rosner","doi":"10.1109/CVMP.2011.9","DOIUrl":null,"url":null,"abstract":"For enabling immersive user experiences for interactive TV services and automating camera view selection and framing, knowledge of the location of persons in a scene is essential. We describe an architecture for detecting and tracking persons in high-resolution panoramic video streams, obtained from the Omni Cam, a panoramic camera stitching video streams from 6 HD resolution tiles. We use a CUDA accelerated feature point tracker, a blob detector and a CUDA HOG person detector, which are used for region tracking in each of the tiles before fusing the results for the entire panorama. In this paper we focus on the application of the HOG person detector in real-time and the speedup of the feature point tracker by porting it to NVIDIA's Fermi architecture. Evaluations indicate significant speedup for our feature point tracker implementation, enabling the entire process in a real-time system.","PeriodicalId":167135,"journal":{"name":"2011 Conference for Visual Media Production","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Real-time Person Tracking in High-resolution Panoramic Video for Automated Broadcast Production\",\"authors\":\"Rene Kaiser, M. Thaler, Andreas Kriechbaum, Hannes Fassold, W. Bailer, Jakub Rosner\",\"doi\":\"10.1109/CVMP.2011.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For enabling immersive user experiences for interactive TV services and automating camera view selection and framing, knowledge of the location of persons in a scene is essential. We describe an architecture for detecting and tracking persons in high-resolution panoramic video streams, obtained from the Omni Cam, a panoramic camera stitching video streams from 6 HD resolution tiles. We use a CUDA accelerated feature point tracker, a blob detector and a CUDA HOG person detector, which are used for region tracking in each of the tiles before fusing the results for the entire panorama. In this paper we focus on the application of the HOG person detector in real-time and the speedup of the feature point tracker by porting it to NVIDIA's Fermi architecture. Evaluations indicate significant speedup for our feature point tracker implementation, enabling the entire process in a real-time system.\",\"PeriodicalId\":167135,\"journal\":{\"name\":\"2011 Conference for Visual Media Production\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Conference for Visual Media Production\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVMP.2011.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Conference for Visual Media Production","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVMP.2011.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

为了实现交互式电视服务的沉浸式用户体验和自动相机视图选择和取景,了解场景中人物的位置至关重要。我们描述了一种用于在高分辨率全景视频流中检测和跟踪人员的架构,该视频流来自Omni Cam, Omni Cam是一种全景相机,从6个高清分辨率块拼接视频流。我们使用CUDA加速特征点跟踪器,blob检测器和CUDA HOG人检测器,在融合整个全景图的结果之前,它们用于每个瓷砖的区域跟踪。本文重点研究了HOG人检测器的实时应用,并将HOG特征点跟踪器移植到NVIDIA的Fermi架构中,提高了HOG特征点跟踪器的速度。评估表明我们的特征点跟踪器实现显著加速,使整个过程在实时系统中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time Person Tracking in High-resolution Panoramic Video for Automated Broadcast Production
For enabling immersive user experiences for interactive TV services and automating camera view selection and framing, knowledge of the location of persons in a scene is essential. We describe an architecture for detecting and tracking persons in high-resolution panoramic video streams, obtained from the Omni Cam, a panoramic camera stitching video streams from 6 HD resolution tiles. We use a CUDA accelerated feature point tracker, a blob detector and a CUDA HOG person detector, which are used for region tracking in each of the tiles before fusing the results for the entire panorama. In this paper we focus on the application of the HOG person detector in real-time and the speedup of the feature point tracker by porting it to NVIDIA's Fermi architecture. Evaluations indicate significant speedup for our feature point tracker implementation, enabling the entire process in a real-time system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantic Kernels Binarized - A Feature Descriptor for Fast and Robust Matching Flowlab - An Interactive Tool for Editing Dense Image Correspondences Automatic Object Segmentation from Calibrated Images Depth Estimation from Three Cameras Using Belief Propagation: 3D Modelling of Sumo Wrestling Practical Image-Based Relighting and Editing with Spherical-Harmonics and Local Lights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1