安全稳定的匹配规模

Jack Doerner, David Evans, Abhi Shelat
{"title":"安全稳定的匹配规模","authors":"Jack Doerner, David Evans, Abhi Shelat","doi":"10.1145/2976749.2978373","DOIUrl":null,"url":null,"abstract":"When a group of individuals and organizations wish to compute a stable matching---for example, when medical students are matched to medical residency programs---they often outsource the computation to a trusted arbiter in order to preserve the privacy of participants' preferences. Secure multi-party computation offers the possibility of private matching processes that do not rely on any common trusted third party. However, stable matching algorithms have previously been considered infeasible for execution in a secure multi-party context on non-trivial inputs because they are computationally intensive and involve complex data-dependent memory access patterns. We adapt the classic Gale-Shapley algorithm for use in such a context, and show experimentally that our modifications yield a lower asymptotic complexity and more than an order of magnitude in practical cost improvement over previous techniques. Our main improvements stem from designing new oblivious data structures that exploit the properties of the matching algorithms. We apply a similar strategy to scale the Roth-Peranson instability chaining algorithm, currently in use by the National Resident Matching Program. The resulting protocol is efficient enough to be useful at the scale required for matching medical residents nationwide, taking just over 18 hours to complete an execution simulating the 2016 national resident match with more than 35,000 participants and 30,000 residency slots.","PeriodicalId":432261,"journal":{"name":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","volume":"240 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Secure Stable Matching at Scale\",\"authors\":\"Jack Doerner, David Evans, Abhi Shelat\",\"doi\":\"10.1145/2976749.2978373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When a group of individuals and organizations wish to compute a stable matching---for example, when medical students are matched to medical residency programs---they often outsource the computation to a trusted arbiter in order to preserve the privacy of participants' preferences. Secure multi-party computation offers the possibility of private matching processes that do not rely on any common trusted third party. However, stable matching algorithms have previously been considered infeasible for execution in a secure multi-party context on non-trivial inputs because they are computationally intensive and involve complex data-dependent memory access patterns. We adapt the classic Gale-Shapley algorithm for use in such a context, and show experimentally that our modifications yield a lower asymptotic complexity and more than an order of magnitude in practical cost improvement over previous techniques. Our main improvements stem from designing new oblivious data structures that exploit the properties of the matching algorithms. We apply a similar strategy to scale the Roth-Peranson instability chaining algorithm, currently in use by the National Resident Matching Program. The resulting protocol is efficient enough to be useful at the scale required for matching medical residents nationwide, taking just over 18 hours to complete an execution simulating the 2016 national resident match with more than 35,000 participants and 30,000 residency slots.\",\"PeriodicalId\":432261,\"journal\":{\"name\":\"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"240 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2976749.2978373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2976749.2978373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

当一群个人和组织希望计算一个稳定的匹配时——例如,当医科学生与医疗住院医师项目相匹配时——他们通常会将计算外包给一个值得信赖的仲裁者,以保护参与者偏好的隐私。安全多方计算提供了不依赖于任何公共可信第三方的私有匹配过程的可能性。然而,稳定的匹配算法在以前被认为是不可行的,因为它们是计算密集型的,并且涉及复杂的依赖数据的内存访问模式。我们将经典的Gale-Shapley算法用于这种情况,并通过实验表明,我们的修改产生了更低的渐近复杂性,并且在实际成本上比以前的技术提高了一个数量级以上。我们的主要改进源于设计新的遗忘数据结构,利用匹配算法的属性。我们采用类似的策略来扩展目前在国家居民匹配计划中使用的Roth-Peranson不稳定性链算法。由此产生的协议非常高效,足以在匹配全国医疗住院医师所需的规模上发挥作用,只需18个多小时就完成了模拟2016年全国住院医师匹配的执行,有超过35,000名参与者和30,000个住院医师名额。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Secure Stable Matching at Scale
When a group of individuals and organizations wish to compute a stable matching---for example, when medical students are matched to medical residency programs---they often outsource the computation to a trusted arbiter in order to preserve the privacy of participants' preferences. Secure multi-party computation offers the possibility of private matching processes that do not rely on any common trusted third party. However, stable matching algorithms have previously been considered infeasible for execution in a secure multi-party context on non-trivial inputs because they are computationally intensive and involve complex data-dependent memory access patterns. We adapt the classic Gale-Shapley algorithm for use in such a context, and show experimentally that our modifications yield a lower asymptotic complexity and more than an order of magnitude in practical cost improvement over previous techniques. Our main improvements stem from designing new oblivious data structures that exploit the properties of the matching algorithms. We apply a similar strategy to scale the Roth-Peranson instability chaining algorithm, currently in use by the National Resident Matching Program. The resulting protocol is efficient enough to be useful at the scale required for matching medical residents nationwide, taking just over 18 hours to complete an execution simulating the 2016 national resident match with more than 35,000 participants and 30,000 residency slots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
∑oφoς: Forward Secure Searchable Encryption Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition Message-Recovery Attacks on Feistel-Based Format Preserving Encryption iLock: Immediate and Automatic Locking of Mobile Devices against Data Theft Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1