uninstudents @ SardiStance:意大利语推文中的姿态检测-任务A(短文)

Maurizio Moraca, G. Sabella, Simone Morra
{"title":"uninstudents @ SardiStance:意大利语推文中的姿态检测-任务A(短文)","authors":"Maurizio Moraca, G. Sabella, Simone Morra","doi":"10.4000/BOOKS.AACCADEMIA.7189","DOIUrl":null,"url":null,"abstract":"English. This document describes a classification system for the SardiStance task at EVALITA 2020. The task consists in classifying the stance of the author of a series of tweets towards a specific discussion topic. The resulting system was specifically developed by the authors as final project for the Natural Language Processing class of the Master in Computer Science at University of Naples Federico II. The proposed system is based on an SVM classifier with a radial basis function as kernel making use of features like 2 chargrams, unigram hashtag and Afinn weight computed on automatic translated tweets. The results are promising in that the system performances are on average higher than that of the baseline proposed by the task organizers. Italiano. Questo documento descrive un sistema di classificazione per il task SardiStance di EVALITA 2020. Il task consiste nel classificare la posizione dell’autore di una serie di tweets nei confronti di uno specifico topic di discussione. Il sistema risultante è stato specificamente sviluppato dagli autori come progetto finale per il corso di Elaborazione del Linguaggio Naturale nell’ambito del corso di laurea magistrale in Informatica presso l’università degli studi di Napoli Federico II. Il sistema qui proposto si basa su un classificatore SVM con una funzione radiale di base come kernel facendo uso di feaCopyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). tures come 2 char-grams, unigram hashtag e l’Afinn weight calcolato sui tweet tradotti in automatico. I risultati sono promettenti in quanto le performance sono in media superiori rispetto a quelle della baseline proposta dagli organizzatori del","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"UninaStudents @ SardiStance: Stance Detection in Italian Tweets - Task A (short paper)\",\"authors\":\"Maurizio Moraca, G. Sabella, Simone Morra\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.7189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"English. This document describes a classification system for the SardiStance task at EVALITA 2020. The task consists in classifying the stance of the author of a series of tweets towards a specific discussion topic. The resulting system was specifically developed by the authors as final project for the Natural Language Processing class of the Master in Computer Science at University of Naples Federico II. The proposed system is based on an SVM classifier with a radial basis function as kernel making use of features like 2 chargrams, unigram hashtag and Afinn weight computed on automatic translated tweets. The results are promising in that the system performances are on average higher than that of the baseline proposed by the task organizers. Italiano. Questo documento descrive un sistema di classificazione per il task SardiStance di EVALITA 2020. Il task consiste nel classificare la posizione dell’autore di una serie di tweets nei confronti di uno specifico topic di discussione. Il sistema risultante è stato specificamente sviluppato dagli autori come progetto finale per il corso di Elaborazione del Linguaggio Naturale nell’ambito del corso di laurea magistrale in Informatica presso l’università degli studi di Napoli Federico II. Il sistema qui proposto si basa su un classificatore SVM con una funzione radiale di base come kernel facendo uso di feaCopyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). tures come 2 char-grams, unigram hashtag e l’Afinn weight calcolato sui tweet tradotti in automatico. I risultati sono promettenti in quanto le performance sono in media superiori rispetto a quelle della baseline proposta dagli organizzatori del\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.7189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

英语。本文档描述了EVALITA 2020中SardiStance任务的分类系统。该任务包括对一系列tweet的作者对特定讨论主题的立场进行分类。结果系统是由作者专门开发的,作为那不勒斯费德里科二世大学计算机科学硕士自然语言处理课程的最终项目。该系统基于以径向基函数为内核的SVM分类器,利用自动翻译推文计算的2字符图、一元标签和Afinn权重等特征。结果是有希望的,因为系统性能平均高于任务组织者提出的基线。意大利语。问题文档描述系统和分类的每一个任务SardiStance di EVALITA 2020。该任务包括分类、分类、分类、分类、分类、分类、分类、分类、分类、分类、分类、分类、分类、分类、分类、分类、分类和分类。1 .意大利高等教育系统è国家规范,意大利高等教育系统,意大利高等教育系统,意大利高等教育系统,意大利高等教育系统,意大利信息系统,意大利高等教育系统,意大利那不勒斯,费德里科二世。该系统提出了一种基于径向基的非分类支持向量机支持向量机算法。本文版权所有©2020由其作者提供。在知识共享许可国际署名4.0 (CC BY 4.0)下允许使用。这是一个2克、1克的话题标签,在推特上自动发布。我risultati园子promettenti quanto le性能园子在媒体superiori rispetto您德拉基线proposta dagli organizzatori德尔
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UninaStudents @ SardiStance: Stance Detection in Italian Tweets - Task A (short paper)
English. This document describes a classification system for the SardiStance task at EVALITA 2020. The task consists in classifying the stance of the author of a series of tweets towards a specific discussion topic. The resulting system was specifically developed by the authors as final project for the Natural Language Processing class of the Master in Computer Science at University of Naples Federico II. The proposed system is based on an SVM classifier with a radial basis function as kernel making use of features like 2 chargrams, unigram hashtag and Afinn weight computed on automatic translated tweets. The results are promising in that the system performances are on average higher than that of the baseline proposed by the task organizers. Italiano. Questo documento descrive un sistema di classificazione per il task SardiStance di EVALITA 2020. Il task consiste nel classificare la posizione dell’autore di una serie di tweets nei confronti di uno specifico topic di discussione. Il sistema risultante è stato specificamente sviluppato dagli autori come progetto finale per il corso di Elaborazione del Linguaggio Naturale nell’ambito del corso di laurea magistrale in Informatica presso l’università degli studi di Napoli Federico II. Il sistema qui proposto si basa su un classificatore SVM con una funzione radiale di base come kernel facendo uso di feaCopyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). tures come 2 char-grams, unigram hashtag e l’Afinn weight calcolato sui tweet tradotti in automatico. I risultati sono promettenti in quanto le performance sono in media superiori rispetto a quelle della baseline proposta dagli organizzatori del
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper) By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) HaSpeeDe 2 @ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task KIPoS @ EVALITA2020: Overview of the Task on KIParla Part of Speech Tagging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1