一种支持车辆边缘智能的分布式任务调度框架

Kun Yang, Peng Sun, Jieyu Lin, A. Boukerche, Liang Song
{"title":"一种支持车辆边缘智能的分布式任务调度框架","authors":"Kun Yang, Peng Sun, Jieyu Lin, A. Boukerche, Liang Song","doi":"10.1109/ICDCS54860.2022.00098","DOIUrl":null,"url":null,"abstract":"In recent years, data-driven intelligent transportation systems (ITS) have developed rapidly and brought various AI-assisted applications to improve traffic efficiency. However, these applications are constrained by their inherent high computing demand and the limitation of vehicular computing power. Vehicular edge computing (VEC) has shown great potential to support these applications by providing computing and storage capacity in close proximity. For facing the heterogeneous nature of in-vehicle applications and the highly dynamic network topology in the Internet-of-Vehicle (IoV) environment, how to achieve efficient scheduling of computational tasks is a critical problem. Accordingly, we design a two-layer distributed online task scheduling framework to maximize the task acceptance ratio (TAR) under various QoS requirements when facing unbalanced task distribution. Briefly, we implement the computation offloading and transmission scheduling policies for the vehicles to optimize the onboard computational task scheduling. Meanwhile, in the edge computing layer, a new distributed task dispatching policy is developed to maximize the utilization of system computing power and minimize the data transmission delay caused by vehicle motion. Through single-vehicle and multi-vehicle simulations, we evaluate the performance of our framework, and the experimental results show that our method outperforms the state-of-the-art algorithms. Moreover, we conduct ablation experiments to validate the effectiveness of our core algorithms.","PeriodicalId":225883,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Novel Distributed Task Scheduling Framework for Supporting Vehicular Edge Intelligence\",\"authors\":\"Kun Yang, Peng Sun, Jieyu Lin, A. Boukerche, Liang Song\",\"doi\":\"10.1109/ICDCS54860.2022.00098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, data-driven intelligent transportation systems (ITS) have developed rapidly and brought various AI-assisted applications to improve traffic efficiency. However, these applications are constrained by their inherent high computing demand and the limitation of vehicular computing power. Vehicular edge computing (VEC) has shown great potential to support these applications by providing computing and storage capacity in close proximity. For facing the heterogeneous nature of in-vehicle applications and the highly dynamic network topology in the Internet-of-Vehicle (IoV) environment, how to achieve efficient scheduling of computational tasks is a critical problem. Accordingly, we design a two-layer distributed online task scheduling framework to maximize the task acceptance ratio (TAR) under various QoS requirements when facing unbalanced task distribution. Briefly, we implement the computation offloading and transmission scheduling policies for the vehicles to optimize the onboard computational task scheduling. Meanwhile, in the edge computing layer, a new distributed task dispatching policy is developed to maximize the utilization of system computing power and minimize the data transmission delay caused by vehicle motion. Through single-vehicle and multi-vehicle simulations, we evaluate the performance of our framework, and the experimental results show that our method outperforms the state-of-the-art algorithms. Moreover, we conduct ablation experiments to validate the effectiveness of our core algorithms.\",\"PeriodicalId\":225883,\"journal\":{\"name\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS54860.2022.00098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS54860.2022.00098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

近年来,数据驱动的智能交通系统(ITS)发展迅速,并带来了各种人工智能辅助应用,以提高交通效率。然而,这些应用受到其固有的高计算需求和车载计算能力的限制。车辆边缘计算(VEC)通过提供近距离的计算和存储容量,显示出支持这些应用的巨大潜力。面对车载应用的异构性和车联网环境下高度动态的网络拓扑结构,如何实现计算任务的高效调度是一个关键问题。因此,我们设计了一个两层分布式在线任务调度框架,以在面临任务分配不平衡的情况下,最大限度地提高各种QoS要求下的任务接受比(TAR)。简单地说,我们实现了车辆的计算卸载和传输调度策略,以优化车载计算任务调度。同时,在边缘计算层,提出了一种新的分布式任务调度策略,以最大限度地利用系统的计算能力,最大限度地减少车辆运动造成的数据传输延迟。通过单车和多车仿真,我们评估了我们的框架的性能,实验结果表明,我们的方法优于最先进的算法。此外,我们还进行了烧蚀实验来验证我们的核心算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Distributed Task Scheduling Framework for Supporting Vehicular Edge Intelligence
In recent years, data-driven intelligent transportation systems (ITS) have developed rapidly and brought various AI-assisted applications to improve traffic efficiency. However, these applications are constrained by their inherent high computing demand and the limitation of vehicular computing power. Vehicular edge computing (VEC) has shown great potential to support these applications by providing computing and storage capacity in close proximity. For facing the heterogeneous nature of in-vehicle applications and the highly dynamic network topology in the Internet-of-Vehicle (IoV) environment, how to achieve efficient scheduling of computational tasks is a critical problem. Accordingly, we design a two-layer distributed online task scheduling framework to maximize the task acceptance ratio (TAR) under various QoS requirements when facing unbalanced task distribution. Briefly, we implement the computation offloading and transmission scheduling policies for the vehicles to optimize the onboard computational task scheduling. Meanwhile, in the edge computing layer, a new distributed task dispatching policy is developed to maximize the utilization of system computing power and minimize the data transmission delay caused by vehicle motion. Through single-vehicle and multi-vehicle simulations, we evaluate the performance of our framework, and the experimental results show that our method outperforms the state-of-the-art algorithms. Moreover, we conduct ablation experiments to validate the effectiveness of our core algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nezha: Exploiting Concurrency for Transaction Processing in DAG-based Blockchains Toward Cleansing Backdoored Neural Networks in Federated Learning Themis: An Equal, Unpredictable, and Scalable Consensus for Consortium Blockchain IoDSCF: A Store-Carry-Forward Routing Protocol for joint Bus Networks and Internet of Drones FlowValve: Packet Scheduling Offloaded on NP-based SmartNICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1