众测移动内容和环境数据:野外经验教训

K. Jaffrès-Runser, G. Jakllari, Tao Peng, Vlad Nitu
{"title":"众测移动内容和环境数据:野外经验教训","authors":"K. Jaffrès-Runser, G. Jakllari, Tao Peng, Vlad Nitu","doi":"10.1109/PERCOMW.2017.7917579","DOIUrl":null,"url":null,"abstract":"This paper discusses the design and development efforts made to collect data using an opportunistic crowdsensing mobile application. Relevant issues are underlined, and solutions proposed within the CHIST-ERA Macaco project for the specifics of collecting fine-grained content and context data are highlighted. Global statistics on the data gathered for over a year of collection show its quality: Macaco data provides a long-term and fine-grained sampling of the user behavior and network usage that is relevant to model and analyse for future content and context-aware networking developments.","PeriodicalId":319638,"journal":{"name":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Crowdsensing mobile content and context data: Lessons learned in the wild\",\"authors\":\"K. Jaffrès-Runser, G. Jakllari, Tao Peng, Vlad Nitu\",\"doi\":\"10.1109/PERCOMW.2017.7917579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the design and development efforts made to collect data using an opportunistic crowdsensing mobile application. Relevant issues are underlined, and solutions proposed within the CHIST-ERA Macaco project for the specifics of collecting fine-grained content and context data are highlighted. Global statistics on the data gathered for over a year of collection show its quality: Macaco data provides a long-term and fine-grained sampling of the user behavior and network usage that is relevant to model and analyse for future content and context-aware networking developments.\",\"PeriodicalId\":319638,\"journal\":{\"name\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"230 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2017.7917579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2017.7917579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文讨论了设计和开发工作所做的收集数据,使用机会主义众感移动应用程序。强调了相关问题,并重点介绍了在CHIST-ERA Macaco项目中针对收集细粒度内容和上下文数据的具体问题提出的解决方案。一年多来收集的数据的全球统计数据显示了它的质量:Macaco数据提供了用户行为和网络使用的长期和细粒度抽样,这与未来内容和上下文感知网络发展的建模和分析相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crowdsensing mobile content and context data: Lessons learned in the wild
This paper discusses the design and development efforts made to collect data using an opportunistic crowdsensing mobile application. Relevant issues are underlined, and solutions proposed within the CHIST-ERA Macaco project for the specifics of collecting fine-grained content and context data are highlighted. Global statistics on the data gathered for over a year of collection show its quality: Macaco data provides a long-term and fine-grained sampling of the user behavior and network usage that is relevant to model and analyse for future content and context-aware networking developments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity to web hosting in a mobile field survey NFC based dataset annotation within a behavioral alerting platform An aggregation and visualization technique for crowd-sourced continuous monitoring of transport infrastructures Trainwear: A real-time assisted training feedback system with fabric wearable sensors Toward real-time in-home activity recognition using indoor positioning sensor and power meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1