Yahan Yu, Yixuan Xu, Jian Wang, Zhenxing Li, Bin Cao
{"title":"基于方面层图神经网络的金融机构反洗钱风险识别","authors":"Yahan Yu, Yixuan Xu, Jian Wang, Zhenxing Li, Bin Cao","doi":"10.1109/QRS-C57518.2022.00086","DOIUrl":null,"url":null,"abstract":"The contemporary financial industry is a highly information-based industry. The digital system can establish a complete information system around various attributes and behaviors of bank accounts. In the core business system, most of this information is constantly changing and recorded in real time. Therefore, we can achieve the goal of monitoring the money laundering risk of the account by analyzing the relevant element data and specific characteristics of the account. The risk assessment and customer classification indicator system for accounts is composed of four basic elements: customer characteristics, location, business development and industry conditions. Account money laundering risk indicators are composed of various basic elements and their risk sub-items. We propose an aspect-based (aspect-level) graph convolutional neural network, starting from different perspectives, to quantify the risk of money laundering in financial institutions.","PeriodicalId":183728,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-Money Laundering Risk Identification of Financial Institutions based on Aspect-Level Graph Neural Networks\",\"authors\":\"Yahan Yu, Yixuan Xu, Jian Wang, Zhenxing Li, Bin Cao\",\"doi\":\"10.1109/QRS-C57518.2022.00086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The contemporary financial industry is a highly information-based industry. The digital system can establish a complete information system around various attributes and behaviors of bank accounts. In the core business system, most of this information is constantly changing and recorded in real time. Therefore, we can achieve the goal of monitoring the money laundering risk of the account by analyzing the relevant element data and specific characteristics of the account. The risk assessment and customer classification indicator system for accounts is composed of four basic elements: customer characteristics, location, business development and industry conditions. Account money laundering risk indicators are composed of various basic elements and their risk sub-items. We propose an aspect-based (aspect-level) graph convolutional neural network, starting from different perspectives, to quantify the risk of money laundering in financial institutions.\",\"PeriodicalId\":183728,\"journal\":{\"name\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS-C57518.2022.00086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C57518.2022.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anti-Money Laundering Risk Identification of Financial Institutions based on Aspect-Level Graph Neural Networks
The contemporary financial industry is a highly information-based industry. The digital system can establish a complete information system around various attributes and behaviors of bank accounts. In the core business system, most of this information is constantly changing and recorded in real time. Therefore, we can achieve the goal of monitoring the money laundering risk of the account by analyzing the relevant element data and specific characteristics of the account. The risk assessment and customer classification indicator system for accounts is composed of four basic elements: customer characteristics, location, business development and industry conditions. Account money laundering risk indicators are composed of various basic elements and their risk sub-items. We propose an aspect-based (aspect-level) graph convolutional neural network, starting from different perspectives, to quantify the risk of money laundering in financial institutions.