基于径向基函数的人体运动情感识别网络结构

Mark Rosenblum, Y. Yacoob, Larry Davis
{"title":"基于径向基函数的人体运动情感识别网络结构","authors":"Mark Rosenblum, Y. Yacoob, Larry Davis","doi":"10.1109/MNRAO.1994.346256","DOIUrl":null,"url":null,"abstract":"A radial basis function network architecture is developed that learns the correlation of facial feature motion patterns and human emotions. We describe a hierarchical approach which at the highest level identifies emotions, at the mid level determines motion of facial features, and at the low level recovers motion directions. Individual emotion networks were trained to recognize the 'smile' and 'surprise' emotions. Each emotion network was trained by viewing a set of sequences of one emotion for many subjects. The trained neural network was then tested for retention, extrapolation and rejection ability. Success rates were about 88% for retention, 73% for extrapolation, and 79% for rejection.<<ETX>>","PeriodicalId":336218,"journal":{"name":"Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":"{\"title\":\"Human emotion recognition from motion using a radial basis function network architecture\",\"authors\":\"Mark Rosenblum, Y. Yacoob, Larry Davis\",\"doi\":\"10.1109/MNRAO.1994.346256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A radial basis function network architecture is developed that learns the correlation of facial feature motion patterns and human emotions. We describe a hierarchical approach which at the highest level identifies emotions, at the mid level determines motion of facial features, and at the low level recovers motion directions. Individual emotion networks were trained to recognize the 'smile' and 'surprise' emotions. Each emotion network was trained by viewing a set of sequences of one emotion for many subjects. The trained neural network was then tested for retention, extrapolation and rejection ability. Success rates were about 88% for retention, 73% for extrapolation, and 79% for rejection.<<ETX>>\",\"PeriodicalId\":336218,\"journal\":{\"name\":\"Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"117\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNRAO.1994.346256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNRAO.1994.346256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

摘要

提出了一种学习人脸特征运动模式与人类情绪之间相关性的径向基函数网络结构。我们描述了一种分层方法,该方法在最高层识别情绪,在中层确定面部特征的运动,在低层恢复运动方向。个体情绪网络被训练来识别“微笑”和“惊讶”情绪。每个情绪网络都是通过观看许多受试者的一种情绪的一系列序列来训练的。然后测试训练后的神经网络的保留能力、外推能力和排斥能力。保留率为88%,外推率为73%,拒绝率为79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human emotion recognition from motion using a radial basis function network architecture
A radial basis function network architecture is developed that learns the correlation of facial feature motion patterns and human emotions. We describe a hierarchical approach which at the highest level identifies emotions, at the mid level determines motion of facial features, and at the low level recovers motion directions. Individual emotion networks were trained to recognize the 'smile' and 'surprise' emotions. Each emotion network was trained by viewing a set of sequences of one emotion for many subjects. The trained neural network was then tested for retention, extrapolation and rejection ability. Success rates were about 88% for retention, 73% for extrapolation, and 79% for rejection.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting irregularities in cyclic motion Contour tracking by multi-frame relaxation A system for human motion matching between synthetic and real images based on a biomechanic graphical model Segmenting independently moving, noisy points Analyzing gait with spatiotemporal surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1