矩阵乘积的分布统计估计及其应用

David P. Woodruff, Qin Zhang
{"title":"矩阵乘积的分布统计估计及其应用","authors":"David P. Woodruff, Qin Zhang","doi":"10.1145/3196959.3196964","DOIUrl":null,"url":null,"abstract":"We consider statistical estimations of a matrix product over the integers in a distributed setting, where we have two parties Alice and Bob; Alice holds a matrix A and Bob holds a matrix B, and they want to estimate statistics of $A \\cdot B$. We focus on the well-studied $\\ell_p$-norm, distinct elements ($p = 0$), $\\ell_0$-sampling, and heavy hitter problems. The goal is to minimize both the communication cost and the number of rounds of communication. This problem is closely related to the fundamental set-intersection join problem in databases: when $p = 0$ the problem corresponds to the size of the set-intersection join. When $p = ınfty$ the output is simply the pair of sets with the maximum intersection size. When $p = 1$ the problem corresponds to the size of the corresponding natural join. We also consider the heavy hitters problem which corresponds to finding the pairs of sets with intersection size above a certain threshold, and the problem of sampling an intersecting pair of sets uniformly at random.","PeriodicalId":344370,"journal":{"name":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Distributed Statistical Estimation of Matrix Products with Applications\",\"authors\":\"David P. Woodruff, Qin Zhang\",\"doi\":\"10.1145/3196959.3196964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider statistical estimations of a matrix product over the integers in a distributed setting, where we have two parties Alice and Bob; Alice holds a matrix A and Bob holds a matrix B, and they want to estimate statistics of $A \\\\cdot B$. We focus on the well-studied $\\\\ell_p$-norm, distinct elements ($p = 0$), $\\\\ell_0$-sampling, and heavy hitter problems. The goal is to minimize both the communication cost and the number of rounds of communication. This problem is closely related to the fundamental set-intersection join problem in databases: when $p = 0$ the problem corresponds to the size of the set-intersection join. When $p = ınfty$ the output is simply the pair of sets with the maximum intersection size. When $p = 1$ the problem corresponds to the size of the corresponding natural join. We also consider the heavy hitters problem which corresponds to finding the pairs of sets with intersection size above a certain threshold, and the problem of sampling an intersecting pair of sets uniformly at random.\",\"PeriodicalId\":344370,\"journal\":{\"name\":\"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3196959.3196964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3196959.3196964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们考虑一个分布集合中整数上矩阵积的统计估计,其中我们有两方Alice和Bob;Alice持有矩阵a Bob持有矩阵B,他们想要估计a \cdot B的统计量。我们专注于研究得很好的$\ell_p$-norm、distinct elements ($p = 0$)、$\ell_0$-sampling和重磅问题。目标是最小化通信成本和通信轮数。这个问题与数据库中基本的集-交连接问题密切相关:当$p = 0$时,问题对应于集-交连接的大小。当$p = ınfty$时,输出只是具有最大交集大小的集合对。当p = 1时,问题对应于相应的自然连接的大小。我们还考虑了寻找相交大小超过一定阈值的集合对的重拳问题,以及对相交的集合对进行均匀随机抽样的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Statistical Estimation of Matrix Products with Applications
We consider statistical estimations of a matrix product over the integers in a distributed setting, where we have two parties Alice and Bob; Alice holds a matrix A and Bob holds a matrix B, and they want to estimate statistics of $A \cdot B$. We focus on the well-studied $\ell_p$-norm, distinct elements ($p = 0$), $\ell_0$-sampling, and heavy hitter problems. The goal is to minimize both the communication cost and the number of rounds of communication. This problem is closely related to the fundamental set-intersection join problem in databases: when $p = 0$ the problem corresponds to the size of the set-intersection join. When $p = ınfty$ the output is simply the pair of sets with the maximum intersection size. When $p = 1$ the problem corresponds to the size of the corresponding natural join. We also consider the heavy hitters problem which corresponds to finding the pairs of sets with intersection size above a certain threshold, and the problem of sampling an intersecting pair of sets uniformly at random.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consistent Query Answering for Primary Keys and Conjunctive Queries with Negated Atoms Enumeration of MSO Queries on Strings with Constant Delay and Logarithmic Updates An Operational Approach to Consistent Query Answering Entity Matching with Active Monotone Classification In-memory Representations of Databases via Succinct Data Structures: Tutorial Abstract
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1