{"title":"利用多目标可得性对系统风险预测进行回溯测试","authors":"Tobias Fissler, Y. Hoga","doi":"10.1080/07350015.2023.2200514","DOIUrl":null,"url":null,"abstract":"Systemic risk measures such as CoVaR, CoES and MES are widely-used in finance, macroeconomics and by regulatory bodies. Despite their importance, we show that they fail to be elicitable and identifiable. This renders forecast comparison and validation, commonly summarised as `backtesting', impossible. The novel notion of \\emph{multi-objective elicitability} solves this problem. Specifically, we propose Diebold--Mariano type tests utilising two-dimensional scores equipped with the lexicographic order. We illustrate the test decisions by an easy-to-apply traffic-light approach. We apply our traffic-light approach to DAX~30 and S\\&P~500 returns, and infer some recommendations for regulators.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Backtesting Systemic Risk Forecasts using Multi-Objective Elicitability\",\"authors\":\"Tobias Fissler, Y. Hoga\",\"doi\":\"10.1080/07350015.2023.2200514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systemic risk measures such as CoVaR, CoES and MES are widely-used in finance, macroeconomics and by regulatory bodies. Despite their importance, we show that they fail to be elicitable and identifiable. This renders forecast comparison and validation, commonly summarised as `backtesting', impossible. The novel notion of \\\\emph{multi-objective elicitability} solves this problem. Specifically, we propose Diebold--Mariano type tests utilising two-dimensional scores equipped with the lexicographic order. We illustrate the test decisions by an easy-to-apply traffic-light approach. We apply our traffic-light approach to DAX~30 and S\\\\&P~500 returns, and infer some recommendations for regulators.\",\"PeriodicalId\":118766,\"journal\":{\"name\":\"Journal of Business & Economic Statistics\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business & Economic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2023.2200514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2023.2200514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Backtesting Systemic Risk Forecasts using Multi-Objective Elicitability
Systemic risk measures such as CoVaR, CoES and MES are widely-used in finance, macroeconomics and by regulatory bodies. Despite their importance, we show that they fail to be elicitable and identifiable. This renders forecast comparison and validation, commonly summarised as `backtesting', impossible. The novel notion of \emph{multi-objective elicitability} solves this problem. Specifically, we propose Diebold--Mariano type tests utilising two-dimensional scores equipped with the lexicographic order. We illustrate the test decisions by an easy-to-apply traffic-light approach. We apply our traffic-light approach to DAX~30 and S\&P~500 returns, and infer some recommendations for regulators.