消费者会谈论我产品中的软件吗?亚马逊物联网产品探索性研究

Kamonphop Srisopha, B. Boehm, Pooyan Behnamghader
{"title":"消费者会谈论我产品中的软件吗?亚马逊物联网产品探索性研究","authors":"Kamonphop Srisopha, B. Boehm, Pooyan Behnamghader","doi":"10.19153/CLEIEJ.22.1.1","DOIUrl":null,"url":null,"abstract":"Consumer product reviews are an invaluable source of data because they contain a wide range of information that could help requirement engineers to meet user needs. Recent studies have shown that tweets about software applications and reviews on App Stores contain useful information, which enable a more responsive software requirements elicitation. However, all of these studies' subjects are merely software applications. Information on system software, such as embedded software, operating systems, and firmware, are overlooked, unless reviews of a product using them are investigated. Challenges in investigating these reviews could come from the fact that there is a huge volume of data available, as well as the fact that reviews of such products are diverse in nature, meaning that they may contain information mostly on hardware components or broadly on the product as a whole. Motivated by these observations, we conduct an exploratory study using a dataset of 7198 review sentences from 6 Internet of Things (IoT) products. Our qualitative analysis demonstrates that a sufficient quantity of software related information exists in these reviews. In addition, we investigate the performance of two supervised machine learning techniques (Support Vector Machines and Convolutional Neural Networks) for classification of information contained in the reviews. Our results suggest that, with a certain setup, these two techniques can be used to classify the information automatically with high precision and recall.","PeriodicalId":418941,"journal":{"name":"CLEI Electron. J.","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Do consumers talk about the software in my product? An Exploratory Study of IoT Products on Amazon\",\"authors\":\"Kamonphop Srisopha, B. Boehm, Pooyan Behnamghader\",\"doi\":\"10.19153/CLEIEJ.22.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consumer product reviews are an invaluable source of data because they contain a wide range of information that could help requirement engineers to meet user needs. Recent studies have shown that tweets about software applications and reviews on App Stores contain useful information, which enable a more responsive software requirements elicitation. However, all of these studies' subjects are merely software applications. Information on system software, such as embedded software, operating systems, and firmware, are overlooked, unless reviews of a product using them are investigated. Challenges in investigating these reviews could come from the fact that there is a huge volume of data available, as well as the fact that reviews of such products are diverse in nature, meaning that they may contain information mostly on hardware components or broadly on the product as a whole. Motivated by these observations, we conduct an exploratory study using a dataset of 7198 review sentences from 6 Internet of Things (IoT) products. Our qualitative analysis demonstrates that a sufficient quantity of software related information exists in these reviews. In addition, we investigate the performance of two supervised machine learning techniques (Support Vector Machines and Convolutional Neural Networks) for classification of information contained in the reviews. Our results suggest that, with a certain setup, these two techniques can be used to classify the information automatically with high precision and recall.\",\"PeriodicalId\":418941,\"journal\":{\"name\":\"CLEI Electron. J.\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CLEI Electron. J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19153/CLEIEJ.22.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CLEI Electron. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19153/CLEIEJ.22.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

消费者产品评论是一个无价的数据来源,因为它们包含了广泛的信息,可以帮助需求工程师满足用户需求。最近的研究表明,关于软件应用程序的推文和App store上的评论包含有用的信息,这使得软件需求的反应更加迅速。然而,所有这些研究的对象都仅仅是软件应用程序。关于系统软件的信息,例如嵌入式软件、操作系统和固件,被忽略了,除非对使用它们的产品进行审查。调查这些评论的挑战可能来自这样一个事实,即存在大量可用的数据,以及这些产品的评论本质上是多种多样的,这意味着它们可能包含主要关于硬件组件的信息,也可能包含关于整个产品的广泛信息。基于这些观察结果,我们使用来自6种物联网(IoT)产品的7198个评论句子的数据集进行了一项探索性研究。我们的定性分析表明,在这些评论中存在足够数量的软件相关信息。此外,我们研究了两种监督机器学习技术(支持向量机和卷积神经网络)对评论中包含的信息进行分类的性能。我们的研究结果表明,在一定的设置下,这两种技术可以在较高的准确率和召回率下自动分类信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Do consumers talk about the software in my product? An Exploratory Study of IoT Products on Amazon
Consumer product reviews are an invaluable source of data because they contain a wide range of information that could help requirement engineers to meet user needs. Recent studies have shown that tweets about software applications and reviews on App Stores contain useful information, which enable a more responsive software requirements elicitation. However, all of these studies' subjects are merely software applications. Information on system software, such as embedded software, operating systems, and firmware, are overlooked, unless reviews of a product using them are investigated. Challenges in investigating these reviews could come from the fact that there is a huge volume of data available, as well as the fact that reviews of such products are diverse in nature, meaning that they may contain information mostly on hardware components or broadly on the product as a whole. Motivated by these observations, we conduct an exploratory study using a dataset of 7198 review sentences from 6 Internet of Things (IoT) products. Our qualitative analysis demonstrates that a sufficient quantity of software related information exists in these reviews. In addition, we investigate the performance of two supervised machine learning techniques (Support Vector Machines and Convolutional Neural Networks) for classification of information contained in the reviews. Our results suggest that, with a certain setup, these two techniques can be used to classify the information automatically with high precision and recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cluster-based LSTM models to improve Dengue cases forecast Medium Access Control Techniques for Massive Machine-Type Communications in Cellular IoT Networks 2D Simplified Wildfire Spreading Model in Python: From NumPy to CuPy Preface to the CLTM-CLTD 2022 Special Issue On the specification and verification of the PCR parallel programming pattern in TLA+
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1