A. A. Antushevich, P. Minakova, Aleksandr Vladimirovich Zyazya, Andrei Mikhailovich Poddubnyi
{"title":"城市生活垃圾填埋场能量容量评价","authors":"A. A. Antushevich, P. Minakova, Aleksandr Vladimirovich Zyazya, Andrei Mikhailovich Poddubnyi","doi":"10.25136/2409-7543.2020.5.34738","DOIUrl":null,"url":null,"abstract":"\n This article examines the energy capacity of the municipal solid waste landfill in the town of Partizansk, Primorsky Krai. The landfill was launched in 1975. The landfill has a monsoon-type climate with warm, humid summers and cold winters with little amount of snow. The services are provided to 45,646 people. The morphological composition of municipal solid waste (MSW) stored on the landfill consist of recyclable paper, glass, polymers, textiles, ferrous and nonferrous metal, food waste, etc. The authors provide a brief characteristics to the landfill; examine biogas yield, component composition of landfill gas, and average composition of biogas; determine specific density of biogas per year. The article calculates the maximum single and gross emissions of pollutants, average specific values of harmful emissions, annual and maximum single amount of landfill gas. Assessment is given to the theoretical energy value of municipal solid waste landfill. The energy capacity of municipal solid waste landfill and its economic efficiency are indicated. In the course of technical calculations, the number of nonrenewable energy resources (coal, oil, natural gas), which can be saved if replace energy carriers with landfill gas is determined. The analysis of using MSW as the renewable secondary energy resources demonstrates the growing role of this source in energy saving and capacity for reducing environmental pollution due to collection and disposal of biogas.\n","PeriodicalId":150406,"journal":{"name":"Вопросы безопасности","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The assessment of energy capacity of the municipal solid waste landfill\",\"authors\":\"A. A. Antushevich, P. Minakova, Aleksandr Vladimirovich Zyazya, Andrei Mikhailovich Poddubnyi\",\"doi\":\"10.25136/2409-7543.2020.5.34738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article examines the energy capacity of the municipal solid waste landfill in the town of Partizansk, Primorsky Krai. The landfill was launched in 1975. The landfill has a monsoon-type climate with warm, humid summers and cold winters with little amount of snow. The services are provided to 45,646 people. The morphological composition of municipal solid waste (MSW) stored on the landfill consist of recyclable paper, glass, polymers, textiles, ferrous and nonferrous metal, food waste, etc. The authors provide a brief characteristics to the landfill; examine biogas yield, component composition of landfill gas, and average composition of biogas; determine specific density of biogas per year. The article calculates the maximum single and gross emissions of pollutants, average specific values of harmful emissions, annual and maximum single amount of landfill gas. Assessment is given to the theoretical energy value of municipal solid waste landfill. The energy capacity of municipal solid waste landfill and its economic efficiency are indicated. In the course of technical calculations, the number of nonrenewable energy resources (coal, oil, natural gas), which can be saved if replace energy carriers with landfill gas is determined. The analysis of using MSW as the renewable secondary energy resources demonstrates the growing role of this source in energy saving and capacity for reducing environmental pollution due to collection and disposal of biogas.\\n\",\"PeriodicalId\":150406,\"journal\":{\"name\":\"Вопросы безопасности\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Вопросы безопасности\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25136/2409-7543.2020.5.34738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Вопросы безопасности","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25136/2409-7543.2020.5.34738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The assessment of energy capacity of the municipal solid waste landfill
This article examines the energy capacity of the municipal solid waste landfill in the town of Partizansk, Primorsky Krai. The landfill was launched in 1975. The landfill has a monsoon-type climate with warm, humid summers and cold winters with little amount of snow. The services are provided to 45,646 people. The morphological composition of municipal solid waste (MSW) stored on the landfill consist of recyclable paper, glass, polymers, textiles, ferrous and nonferrous metal, food waste, etc. The authors provide a brief characteristics to the landfill; examine biogas yield, component composition of landfill gas, and average composition of biogas; determine specific density of biogas per year. The article calculates the maximum single and gross emissions of pollutants, average specific values of harmful emissions, annual and maximum single amount of landfill gas. Assessment is given to the theoretical energy value of municipal solid waste landfill. The energy capacity of municipal solid waste landfill and its economic efficiency are indicated. In the course of technical calculations, the number of nonrenewable energy resources (coal, oil, natural gas), which can be saved if replace energy carriers with landfill gas is determined. The analysis of using MSW as the renewable secondary energy resources demonstrates the growing role of this source in energy saving and capacity for reducing environmental pollution due to collection and disposal of biogas.