将行人航位推算与磁场、WiFi指纹相结合的室内定位方法

Ryoji Ban, K. Kaji, Kei Hiroi, Nobuo Kawaguchi
{"title":"将行人航位推算与磁场、WiFi指纹相结合的室内定位方法","authors":"Ryoji Ban, K. Kaji, Kei Hiroi, Nobuo Kawaguchi","doi":"10.1109/ICMU.2015.7061061","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a high accuracy indoor positioning method that uses residual magnetism in addition to Pedestrian Dead Reckoning (PDR) and WiFi-based localization methods. Our proposed method needs WiFi and magnetic field fingerprints, which are created by measuring in advance the WiFi radio waves and the magnetic field in the target map. The fingerprints are represented by a Gaussian Mixture Models (GMMs) to reduce the amount of computation. Our proposed method estimates positions by comparing the pedestrian sensor and fingerprint values by particle filters. We evaluated this method in real environments and confirmed that it provides accurate indoor positioning with a mean error less than 8 m and more accurate position detection than existing techniques.","PeriodicalId":251023,"journal":{"name":"2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Indoor positioning method integrating pedestrian Dead Reckoning with magnetic field and WiFi fingerprints\",\"authors\":\"Ryoji Ban, K. Kaji, Kei Hiroi, Nobuo Kawaguchi\",\"doi\":\"10.1109/ICMU.2015.7061061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a high accuracy indoor positioning method that uses residual magnetism in addition to Pedestrian Dead Reckoning (PDR) and WiFi-based localization methods. Our proposed method needs WiFi and magnetic field fingerprints, which are created by measuring in advance the WiFi radio waves and the magnetic field in the target map. The fingerprints are represented by a Gaussian Mixture Models (GMMs) to reduce the amount of computation. Our proposed method estimates positions by comparing the pedestrian sensor and fingerprint values by particle filters. We evaluated this method in real environments and confirmed that it provides accurate indoor positioning with a mean error less than 8 m and more accurate position detection than existing techniques.\",\"PeriodicalId\":251023,\"journal\":{\"name\":\"2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMU.2015.7061061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMU.2015.7061061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

在本文中,我们提出了一种基于行人航位推算(PDR)和基于wifi的定位方法的高精度室内定位方法。我们提出的方法需要WiFi和磁场指纹,这些指纹是通过事先测量目标地图中的WiFi无线电波和磁场而产生的。为了减少计算量,指纹用高斯混合模型(GMMs)表示。我们提出的方法通过粒子滤波比较行人传感器和指纹值来估计位置。我们在实际环境中对该方法进行了评估,并证实该方法提供了准确的室内定位,平均误差小于8 m,并且比现有技术更精确的位置检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indoor positioning method integrating pedestrian Dead Reckoning with magnetic field and WiFi fingerprints
In this paper, we propose a high accuracy indoor positioning method that uses residual magnetism in addition to Pedestrian Dead Reckoning (PDR) and WiFi-based localization methods. Our proposed method needs WiFi and magnetic field fingerprints, which are created by measuring in advance the WiFi radio waves and the magnetic field in the target map. The fingerprints are represented by a Gaussian Mixture Models (GMMs) to reduce the amount of computation. Our proposed method estimates positions by comparing the pedestrian sensor and fingerprint values by particle filters. We evaluated this method in real environments and confirmed that it provides accurate indoor positioning with a mean error less than 8 m and more accurate position detection than existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Climate condition that mostly affects the change of tweet content Prototype development of “Integrative Education Environmental System using smart phone” and proposal of operational model Dynamic social influence modeling from perspective of gray-scale mixing process Exploring UX issues in Quantified Self technologies Passive user identification using sequential analysis of proximity information in touchscreen usage patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1