演示:Kahawai:使用GPU卸载的高质量手机游戏

Eduardo Cuervo, A. Wolman, Landon P. Cox, Kiron Lebeck, Ali Razeen, S. Saroiu, M. Musuvathi
{"title":"演示:Kahawai:使用GPU卸载的高质量手机游戏","authors":"Eduardo Cuervo, A. Wolman, Landon P. Cox, Kiron Lebeck, Ali Razeen, S. Saroiu, M. Musuvathi","doi":"10.1145/2594368.2601482","DOIUrl":null,"url":null,"abstract":"This paper presents Kahawai1, a system that provides high-quality gaming on mobile devices, such as tablets and smartphones, by offloading a portion of the GPU computation to server-side infrastructure. In contrast with previous thin-client approaches that require a server-side GPU to render the entire content, Kahawai uses collaborative rendering to combine the output of a mobile GPU and a server-side GPU into the displayed output. Compared to a thin client, collaborative rendering requires significantly less network bandwidth between the mobile device and the server to achieve the same visual quality and, unlike a thin client, collaborative rendering supports disconnected operation, allowing a user to play offline - albeit with reduced visual quality. Kahawai implements two separate techniques for collaborative rendering: (1) a mobile device can render each frame with reduced detail while a server sends a stream of per-frame differences to transform each frame into a high detail version, or (2) a mobile device can render a subset of the frames while a server provides the missing frames. Both techniques are compatible with the hardware-accelerated H.264 video decoders found on most modern mobile devices. We implemented a Kahawai prototype and integrated it with the idTech 4 open-source game engine, an advanced engine used by many commercial games. In our evaluation, we show that Kahawai can deliver gameplay at an acceptable frame rate, and achieve high visual quality using as little as one-sixth of the bandwidth of the conventional thin-client approach. Furthermore, a 50-person user study with our prototype shows that Kahawai can deliver the same gaming experience as a thin client under excellent network conditions.","PeriodicalId":131209,"journal":{"name":"Proceedings of the 12th annual international conference on Mobile systems, applications, and services","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Demo: Kahawai: high-quality mobile gaming using GPU offload\",\"authors\":\"Eduardo Cuervo, A. Wolman, Landon P. Cox, Kiron Lebeck, Ali Razeen, S. Saroiu, M. Musuvathi\",\"doi\":\"10.1145/2594368.2601482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents Kahawai1, a system that provides high-quality gaming on mobile devices, such as tablets and smartphones, by offloading a portion of the GPU computation to server-side infrastructure. In contrast with previous thin-client approaches that require a server-side GPU to render the entire content, Kahawai uses collaborative rendering to combine the output of a mobile GPU and a server-side GPU into the displayed output. Compared to a thin client, collaborative rendering requires significantly less network bandwidth between the mobile device and the server to achieve the same visual quality and, unlike a thin client, collaborative rendering supports disconnected operation, allowing a user to play offline - albeit with reduced visual quality. Kahawai implements two separate techniques for collaborative rendering: (1) a mobile device can render each frame with reduced detail while a server sends a stream of per-frame differences to transform each frame into a high detail version, or (2) a mobile device can render a subset of the frames while a server provides the missing frames. Both techniques are compatible with the hardware-accelerated H.264 video decoders found on most modern mobile devices. We implemented a Kahawai prototype and integrated it with the idTech 4 open-source game engine, an advanced engine used by many commercial games. In our evaluation, we show that Kahawai can deliver gameplay at an acceptable frame rate, and achieve high visual quality using as little as one-sixth of the bandwidth of the conventional thin-client approach. Furthermore, a 50-person user study with our prototype shows that Kahawai can deliver the same gaming experience as a thin client under excellent network conditions.\",\"PeriodicalId\":131209,\"journal\":{\"name\":\"Proceedings of the 12th annual international conference on Mobile systems, applications, and services\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th annual international conference on Mobile systems, applications, and services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2594368.2601482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th annual international conference on Mobile systems, applications, and services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2594368.2601482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

本文介绍了Kahawai1,这是一个能够在移动设备(如平板电脑和智能手机)上提供高质量游戏的系统,通过将部分GPU计算卸载到服务器端基础设施。与之前需要服务器端GPU渲染整个内容的瘦客户端方法不同,Kahawai使用协作渲染将移动GPU和服务器端GPU的输出结合到显示的输出中。与瘦客户端相比,协作渲染在移动设备和服务器之间所需的网络带宽要少得多,才能实现相同的视觉质量。与瘦客户端不同的是,协作渲染支持断开连接的操作,允许用户离线播放——尽管视觉质量会降低。Kahawai实现了两种独立的协同渲染技术:(1)移动设备可以渲染每一帧减少细节,而服务器发送每一帧差异流,将每一帧转换为高细节版本,或者(2)移动设备可以渲染帧的子集,而服务器提供缺失的帧。这两种技术都与大多数现代移动设备上的硬件加速H.264视频解码器兼容。我们执行了一个Kahawai原型,并将其与idTech 4开源游戏引擎(许多商业游戏使用的先进引擎)整合在一起。在我们的评估中,我们表明Kahawai可以以可接受的帧速率提供游戏玩法,并使用传统瘦客户端方法的六分之一的带宽实现高视觉质量。此外,使用我们的原型进行的50人用户研究表明,Kahawai可以在良好的网络条件下提供与瘦客户机相同的游戏体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Demo: Kahawai: high-quality mobile gaming using GPU offload
This paper presents Kahawai1, a system that provides high-quality gaming on mobile devices, such as tablets and smartphones, by offloading a portion of the GPU computation to server-side infrastructure. In contrast with previous thin-client approaches that require a server-side GPU to render the entire content, Kahawai uses collaborative rendering to combine the output of a mobile GPU and a server-side GPU into the displayed output. Compared to a thin client, collaborative rendering requires significantly less network bandwidth between the mobile device and the server to achieve the same visual quality and, unlike a thin client, collaborative rendering supports disconnected operation, allowing a user to play offline - albeit with reduced visual quality. Kahawai implements two separate techniques for collaborative rendering: (1) a mobile device can render each frame with reduced detail while a server sends a stream of per-frame differences to transform each frame into a high detail version, or (2) a mobile device can render a subset of the frames while a server provides the missing frames. Both techniques are compatible with the hardware-accelerated H.264 video decoders found on most modern mobile devices. We implemented a Kahawai prototype and integrated it with the idTech 4 open-source game engine, an advanced engine used by many commercial games. In our evaluation, we show that Kahawai can deliver gameplay at an acceptable frame rate, and achieve high visual quality using as little as one-sixth of the bandwidth of the conventional thin-client approach. Furthermore, a 50-person user study with our prototype shows that Kahawai can deliver the same gaming experience as a thin client under excellent network conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterizing resource usage for mobile web browsing Demo: Yalut -- user-centric social networking overlay Demo: Mapping global mobile performance trends with mobilyzer and mobiPerf Poster: DriveBlue: can bluetooth enhance your driving experience? Balancing design and technology to tackle global grand challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1