基于卷积神经网络的心电信号分类方法

Yuan Yang, Jin Guo, Feng Lyu, Shuxi Guo
{"title":"基于卷积神经网络的心电信号分类方法","authors":"Yuan Yang, Jin Guo, Feng Lyu, Shuxi Guo","doi":"10.1109/ICMA57826.2023.10215644","DOIUrl":null,"url":null,"abstract":"Cardiovascular disease is a chronic disease with high incidence, high disability and high mortality, which poses a great threat to the life and health of people all over the world. At present, the incidence and mortality of cardiovascular disease are increasing year by year worldwide, so the prevention and treatment of cardiovascular disease has become a top priority. In recent years, with the development of computer technology in the field of auxiliary diagnosis and treatment, the research on automatic classification of Electrocardiogram (ECG) signals has ushered in new opportunities. In this study, ECG signals are taken as the research object, to analyze the auxiliary diagnosis needs of users such as patients and pathologists. This study mainly uses ECG data from MIT-BIH database, combined with relevant preprocessing knowledge and deep learning classification model, to achieve ECG reading, denoising, segmentation, classification and so on. It can effectively improve the efficiency of diagnosis. It has certain reference value for assisting users to diagnose arrhythmia.","PeriodicalId":151364,"journal":{"name":"2023 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"591 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Classification Method for ECG Signals Based on Convolutional Neural Network\",\"authors\":\"Yuan Yang, Jin Guo, Feng Lyu, Shuxi Guo\",\"doi\":\"10.1109/ICMA57826.2023.10215644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiovascular disease is a chronic disease with high incidence, high disability and high mortality, which poses a great threat to the life and health of people all over the world. At present, the incidence and mortality of cardiovascular disease are increasing year by year worldwide, so the prevention and treatment of cardiovascular disease has become a top priority. In recent years, with the development of computer technology in the field of auxiliary diagnosis and treatment, the research on automatic classification of Electrocardiogram (ECG) signals has ushered in new opportunities. In this study, ECG signals are taken as the research object, to analyze the auxiliary diagnosis needs of users such as patients and pathologists. This study mainly uses ECG data from MIT-BIH database, combined with relevant preprocessing knowledge and deep learning classification model, to achieve ECG reading, denoising, segmentation, classification and so on. It can effectively improve the efficiency of diagnosis. It has certain reference value for assisting users to diagnose arrhythmia.\",\"PeriodicalId\":151364,\"journal\":{\"name\":\"2023 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"591 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA57826.2023.10215644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA57826.2023.10215644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病是一种发病率高、致残率高、死亡率高的慢性病,严重威胁着世界各国人民的生命健康。目前,世界范围内心血管疾病的发病率和死亡率逐年上升,因此预防和治疗心血管疾病已成为重中之重。近年来,随着计算机技术在辅助诊断和治疗领域的发展,心电图信号自动分类的研究迎来了新的机遇。本研究以心电信号为研究对象,分析患者、病理学家等用户的辅助诊断需求。本研究主要利用MIT-BIH数据库的心电数据,结合相关预处理知识和深度学习分类模型,实现心电读取、去噪、分割、分类等功能。可有效提高诊断效率。对辅助用户诊断心律失常有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Classification Method for ECG Signals Based on Convolutional Neural Network
Cardiovascular disease is a chronic disease with high incidence, high disability and high mortality, which poses a great threat to the life and health of people all over the world. At present, the incidence and mortality of cardiovascular disease are increasing year by year worldwide, so the prevention and treatment of cardiovascular disease has become a top priority. In recent years, with the development of computer technology in the field of auxiliary diagnosis and treatment, the research on automatic classification of Electrocardiogram (ECG) signals has ushered in new opportunities. In this study, ECG signals are taken as the research object, to analyze the auxiliary diagnosis needs of users such as patients and pathologists. This study mainly uses ECG data from MIT-BIH database, combined with relevant preprocessing knowledge and deep learning classification model, to achieve ECG reading, denoising, segmentation, classification and so on. It can effectively improve the efficiency of diagnosis. It has certain reference value for assisting users to diagnose arrhythmia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ICMA 2023 Conference Info A Parameter Fluctuation Impact Analysis Algorithm for The Control of Sealing Performance Stability Research on Composite Control Strategy of Off-Grid PV Inverter under Nonlinear Asymmetric Load A Low-Cost Skiing Motion Capture System Based on Monocular RGB Camera and MINS Fusion INS/GNSS/UWB/OD Robust Navigation Algorithm Based on Factor Graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1