遥控直升机PID控制器与滑模控制器的比较

Kevin John Rafferty, E. McGookin
{"title":"遥控直升机PID控制器与滑模控制器的比较","authors":"Kevin John Rafferty, E. McGookin","doi":"10.1109/ICARCV.2012.6485291","DOIUrl":null,"url":null,"abstract":"The focus of this paper is the design and comparison of controllers for a nonlinear mathematical model of a remotely operated helicopter (X-Cell 60 SE). The particular control methodologies used to design propulsion and heading control are based on PID and Sliding Mode theories. The design of these controllers is based on the assumption that the surge and heading dynamics of the system can be separated into independent subsystems, each having only one control input. The resulting controllers are tested through simulated manoeuvres on Matlab, and the results are compared. Their ability to cope with disturbances is also tested. The results show that both controllers perform well with or without external disturbances, but the Sliding Mode controller exhibits better overall performance.","PeriodicalId":441236,"journal":{"name":"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A comparison of PID and Sliding Mode controllers for a remotely operated helicopter\",\"authors\":\"Kevin John Rafferty, E. McGookin\",\"doi\":\"10.1109/ICARCV.2012.6485291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this paper is the design and comparison of controllers for a nonlinear mathematical model of a remotely operated helicopter (X-Cell 60 SE). The particular control methodologies used to design propulsion and heading control are based on PID and Sliding Mode theories. The design of these controllers is based on the assumption that the surge and heading dynamics of the system can be separated into independent subsystems, each having only one control input. The resulting controllers are tested through simulated manoeuvres on Matlab, and the results are compared. Their ability to cope with disturbances is also tested. The results show that both controllers perform well with or without external disturbances, but the Sliding Mode controller exhibits better overall performance.\",\"PeriodicalId\":441236,\"journal\":{\"name\":\"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2012.6485291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2012.6485291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文的重点是遥控直升机(X-Cell 60se)非线性数学模型的控制器设计和比较。用于设计推进和航向控制的特殊控制方法基于PID和滑模理论。这些控制器的设计是基于假设系统的喘振和航向动力学可以分离成独立的子系统,每个子系统只有一个控制输入。在Matlab上对所得到的控制器进行了仿真操作,并对结果进行了比较。它们应对干扰的能力也受到了考验。结果表明,无论有无外部干扰,两种控制器都表现良好,但滑模控制器表现出更好的综合性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparison of PID and Sliding Mode controllers for a remotely operated helicopter
The focus of this paper is the design and comparison of controllers for a nonlinear mathematical model of a remotely operated helicopter (X-Cell 60 SE). The particular control methodologies used to design propulsion and heading control are based on PID and Sliding Mode theories. The design of these controllers is based on the assumption that the surge and heading dynamics of the system can be separated into independent subsystems, each having only one control input. The resulting controllers are tested through simulated manoeuvres on Matlab, and the results are compared. Their ability to cope with disturbances is also tested. The results show that both controllers perform well with or without external disturbances, but the Sliding Mode controller exhibits better overall performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coordinated path following control for a group of car-like vehicles Unmixing approach for hyperspectral data resolution enhancement using high resolution multispectral image A singular value approach for humanoid motion analysis and simulation Improved low cost GPS localization by using communicative vehicles A cooperative personal automated transport system: A CityMobil demonstration in Rocquencourt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1