组合逻辑电路设计中的交叉笛卡尔遗传规划

J. E. H. D. Silva, H. Bernardino
{"title":"组合逻辑电路设计中的交叉笛卡尔遗传规划","authors":"J. E. H. D. Silva, H. Bernardino","doi":"10.1109/BRACIS.2018.00033","DOIUrl":null,"url":null,"abstract":"The development of an efficient crossover for Cartesian Genetic Programming (CGP) has been widely investigated, but there is not a large number of approaches using this type of operator when designing combinational logic circuits. In this paper, we introduce a new crossover for CGP when using a single genotype representation and the desired model has multiple outputs. The proposal modifies the standard evolutionary strategy commonly adopted in CGP by combining the subgraphs of the best outputs of the parent and its offspring in order to generate a new fittest individual. The proposed crossover is applied to combinational logic circuits with multiple outputs, a parameter analysis is performed, and the results obtained are compared to those found by a baseline CGP and other techniques from the literature.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Cartesian Genetic Programming with Crossover for Designing Combinational Logic Circuits\",\"authors\":\"J. E. H. D. Silva, H. Bernardino\",\"doi\":\"10.1109/BRACIS.2018.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of an efficient crossover for Cartesian Genetic Programming (CGP) has been widely investigated, but there is not a large number of approaches using this type of operator when designing combinational logic circuits. In this paper, we introduce a new crossover for CGP when using a single genotype representation and the desired model has multiple outputs. The proposal modifies the standard evolutionary strategy commonly adopted in CGP by combining the subgraphs of the best outputs of the parent and its offspring in order to generate a new fittest individual. The proposed crossover is applied to combinational logic circuits with multiple outputs, a parameter analysis is performed, and the results obtained are compared to those found by a baseline CGP and other techniques from the literature.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2018.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

关于笛卡儿遗传规划(CGP)的高效交叉的发展已经有了广泛的研究,但是在设计组合逻辑电路时使用这类算子的方法并不多。在本文中,我们为CGP引入了一种新的交叉,当使用单一基因型表示并且期望模型具有多个输出时。该方案修改了CGP中常用的标准进化策略,通过结合亲本和子代的最佳输出的子图来产生新的最适合个体。提出的交叉应用于具有多个输出的组合逻辑电路,进行参数分析,并将获得的结果与基线CGP和文献中其他技术的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cartesian Genetic Programming with Crossover for Designing Combinational Logic Circuits
The development of an efficient crossover for Cartesian Genetic Programming (CGP) has been widely investigated, but there is not a large number of approaches using this type of operator when designing combinational logic circuits. In this paper, we introduce a new crossover for CGP when using a single genotype representation and the desired model has multiple outputs. The proposal modifies the standard evolutionary strategy commonly adopted in CGP by combining the subgraphs of the best outputs of the parent and its offspring in order to generate a new fittest individual. The proposed crossover is applied to combinational logic circuits with multiple outputs, a parameter analysis is performed, and the results obtained are compared to those found by a baseline CGP and other techniques from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1