使用端到端优化可转移的3D对抗纹理

Camilo Pestana, Naveed Akhtar, N. Rahnavard, M. Shah, A. Mian
{"title":"使用端到端优化可转移的3D对抗纹理","authors":"Camilo Pestana, Naveed Akhtar, N. Rahnavard, M. Shah, A. Mian","doi":"10.1109/WACV51458.2022.00080","DOIUrl":null,"url":null,"abstract":"Deep visual models are known to be vulnerable to adversarial attacks. The last few years have seen numerous techniques to compute adversarial inputs for these models. However, there are still under-explored avenues in this critical research direction. Among those is the estimation of adversarial textures for 3D models in an end-to-end optimization scheme. In this paper, we propose such a scheme to generate adversarial textures for 3D models that are highly transferable and invariant to different camera views and lighting conditions. Our method makes use of neural rendering with explicit control over the model texture and background. We ensure transferability of the adversarial textures by employing an ensemble of robust and non-robust models. Our technique utilizes 3D models as a proxy to simulate closer to real-life conditions, in contrast to conventional use of 2D images for adversarial attacks. We show the efficacy of our method with extensive experiments.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transferable 3D Adversarial Textures using End-to-end Optimization\",\"authors\":\"Camilo Pestana, Naveed Akhtar, N. Rahnavard, M. Shah, A. Mian\",\"doi\":\"10.1109/WACV51458.2022.00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep visual models are known to be vulnerable to adversarial attacks. The last few years have seen numerous techniques to compute adversarial inputs for these models. However, there are still under-explored avenues in this critical research direction. Among those is the estimation of adversarial textures for 3D models in an end-to-end optimization scheme. In this paper, we propose such a scheme to generate adversarial textures for 3D models that are highly transferable and invariant to different camera views and lighting conditions. Our method makes use of neural rendering with explicit control over the model texture and background. We ensure transferability of the adversarial textures by employing an ensemble of robust and non-robust models. Our technique utilizes 3D models as a proxy to simulate closer to real-life conditions, in contrast to conventional use of 2D images for adversarial attacks. We show the efficacy of our method with extensive experiments.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

众所周知,深度视觉模型容易受到对抗性攻击。最近几年出现了许多计算这些模型的对抗性输入的技术。然而,在这一关键的研究方向上,仍有未开发的途径。其中包括在端到端优化方案中对3D模型的对抗纹理的估计。在本文中,我们提出了这样一种方案来为3D模型生成对抗性纹理,这种纹理在不同的相机视图和光照条件下具有高度可转移性和不变性。我们的方法利用神经渲染对模型纹理和背景进行显式控制。我们通过采用鲁棒和非鲁棒模型的集合来确保对抗性纹理的可转移性。我们的技术利用3D模型作为代理来模拟更接近现实生活的条件,而不是传统的使用2D图像进行对抗性攻击。我们通过大量的实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transferable 3D Adversarial Textures using End-to-end Optimization
Deep visual models are known to be vulnerable to adversarial attacks. The last few years have seen numerous techniques to compute adversarial inputs for these models. However, there are still under-explored avenues in this critical research direction. Among those is the estimation of adversarial textures for 3D models in an end-to-end optimization scheme. In this paper, we propose such a scheme to generate adversarial textures for 3D models that are highly transferable and invariant to different camera views and lighting conditions. Our method makes use of neural rendering with explicit control over the model texture and background. We ensure transferability of the adversarial textures by employing an ensemble of robust and non-robust models. Our technique utilizes 3D models as a proxy to simulate closer to real-life conditions, in contrast to conventional use of 2D images for adversarial attacks. We show the efficacy of our method with extensive experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Learning for Human Sensing Using Radio Signals AirCamRTM: Enhancing Vehicle Detection for Efficient Aerial Camera-based Road Traffic Monitoring QUALIFIER: Question-Guided Self-Attentive Multimodal Fusion Network for Audio Visual Scene-Aware Dialog Transductive Weakly-Supervised Player Detection using Soccer Broadcast Videos Inpaint2Learn: A Self-Supervised Framework for Affordance Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1