{"title":"Langevin竞争学习算法的一种随机微分方法分析","authors":"Jinwuk Seok, Jeun-Woo Lee","doi":"10.1109/ICPR.2002.1048242","DOIUrl":null,"url":null,"abstract":"Recently, various types of neural network models have been used successfully to applications in pattern recognition, control, signal processing, and so on. However, the previous models are not suitable for hardware implementation due to their complexity. In this paper, we present a survey of the stochastic analysis for the Langevin competitive learning algorithm, known for its easy hardware implementation. Since the Langevin competitive learning algorithm uses a time-invariant learning rate and a stochastic reinforcement term, it is necessary to analyze with stochastic differential or difference equation. The result of the analysis verifies that the Langevin competitive learning process is equal to the standard Ornstein-Uhlenback process and has a weak convergence property. The experimental results for Gaussian distributed data confirm the analysis provided in this paper.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The analysis of a stochastic differential approach for Langevin competitive learning algorithm\",\"authors\":\"Jinwuk Seok, Jeun-Woo Lee\",\"doi\":\"10.1109/ICPR.2002.1048242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, various types of neural network models have been used successfully to applications in pattern recognition, control, signal processing, and so on. However, the previous models are not suitable for hardware implementation due to their complexity. In this paper, we present a survey of the stochastic analysis for the Langevin competitive learning algorithm, known for its easy hardware implementation. Since the Langevin competitive learning algorithm uses a time-invariant learning rate and a stochastic reinforcement term, it is necessary to analyze with stochastic differential or difference equation. The result of the analysis verifies that the Langevin competitive learning process is equal to the standard Ornstein-Uhlenback process and has a weak convergence property. The experimental results for Gaussian distributed data confirm the analysis provided in this paper.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The analysis of a stochastic differential approach for Langevin competitive learning algorithm
Recently, various types of neural network models have been used successfully to applications in pattern recognition, control, signal processing, and so on. However, the previous models are not suitable for hardware implementation due to their complexity. In this paper, we present a survey of the stochastic analysis for the Langevin competitive learning algorithm, known for its easy hardware implementation. Since the Langevin competitive learning algorithm uses a time-invariant learning rate and a stochastic reinforcement term, it is necessary to analyze with stochastic differential or difference equation. The result of the analysis verifies that the Langevin competitive learning process is equal to the standard Ornstein-Uhlenback process and has a weak convergence property. The experimental results for Gaussian distributed data confirm the analysis provided in this paper.