用学习自动机求解随机图中的最大团问题

Mohammad Soleimani-Pouri, Alireza Rezvanian, M. Meybodi
{"title":"用学习自动机求解随机图中的最大团问题","authors":"Mohammad Soleimani-Pouri, Alireza Rezvanian, M. Meybodi","doi":"10.1109/CASoN.2012.6412388","DOIUrl":null,"url":null,"abstract":"The maximum clique of a given graph G is the subgraph C of G such that two vertices in C are adjacent in G with maximum cardinality. Finding the maximum clique in an arbitrary graph is an NP-Hard problem, motivated by the social networks analysis. In the real world applications, the nature of interaction between nodes is stochastic and the probability distribution function of the vertex weight is unknown. In this paper a learning automata-based algorithm is proposed for solving maximum clique problem in the stochastic graph. The simulation results on stochastic graph demonstrate that the proposed algorithm outperforms standard sampling method in terms of the number of samplings taken by algorithm.","PeriodicalId":431370,"journal":{"name":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Solving maximum clique problem in stochastic graphs using learning automata\",\"authors\":\"Mohammad Soleimani-Pouri, Alireza Rezvanian, M. Meybodi\",\"doi\":\"10.1109/CASoN.2012.6412388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The maximum clique of a given graph G is the subgraph C of G such that two vertices in C are adjacent in G with maximum cardinality. Finding the maximum clique in an arbitrary graph is an NP-Hard problem, motivated by the social networks analysis. In the real world applications, the nature of interaction between nodes is stochastic and the probability distribution function of the vertex weight is unknown. In this paper a learning automata-based algorithm is proposed for solving maximum clique problem in the stochastic graph. The simulation results on stochastic graph demonstrate that the proposed algorithm outperforms standard sampling method in terms of the number of samplings taken by algorithm.\",\"PeriodicalId\":431370,\"journal\":{\"name\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASoN.2012.6412388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2012.6412388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

给定图G的最大团是G的子图C,使得C中的两个顶点在G中相邻且具有最大基数。在任意图中找到最大的团是一个np困难问题,由社会网络分析驱动。在实际应用中,节点间相互作用的性质是随机的,顶点权重的概率分布函数是未知的。本文提出了一种基于学习自动机的随机图最大团问题求解算法。在随机图上的仿真结果表明,该算法在采样次数方面优于标准采样方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solving maximum clique problem in stochastic graphs using learning automata
The maximum clique of a given graph G is the subgraph C of G such that two vertices in C are adjacent in G with maximum cardinality. Finding the maximum clique in an arbitrary graph is an NP-Hard problem, motivated by the social networks analysis. In the real world applications, the nature of interaction between nodes is stochastic and the probability distribution function of the vertex weight is unknown. In this paper a learning automata-based algorithm is proposed for solving maximum clique problem in the stochastic graph. The simulation results on stochastic graph demonstrate that the proposed algorithm outperforms standard sampling method in terms of the number of samplings taken by algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting Optimum-Path Forest clustering through harmony Search and its applications for intrusion detection in computer networks Graph-based cross-validated committees ensembles Automatic sentiment analysis of Twitter messages Identifying focal patterns in social networks Ontology-based Negotiation of security requirements in cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1