基于现实条件的自动驾驶车辆故障检测实验研究

N. Hashimoto, U. Ozguner, M. Yokozuka, S. Kato, O. Matsumoto, S. Tsugawa
{"title":"基于现实条件的自动驾驶车辆故障检测实验研究","authors":"N. Hashimoto, U. Ozguner, M. Yokozuka, S. Kato, O. Matsumoto, S. Tsugawa","doi":"10.5923/J.JMEA.20120205.02","DOIUrl":null,"url":null,"abstract":"Automated vehicles can contribute to the improvement of transportation through their high capacity, increased safety, low emission and high efficiency. However, unstable conditions of automated mobile systems, which include automated vehicles and mobile robots) can cause serious problems, andthus, automated mobile system requiresto be highly reliable. The objective of this research is to develop on analgorith mfor detection faults (unstable condition) in an automated mobile system and to improve the overall reliability of this system. In this study, we in itially stored and updated a few patterns of data constellations under normal and unstable conditions for fault identification through real-world experiments. Multiple experiments were performed in a public urban area (with course distance per set beingapproximately1.1(km)), where several pedestrians, bicycles, and other robots were also present. The method used for detecting faults utilizes Mahalanobis distance, correlat ion coefficient, and linearization in order to enhance the accuracy of detecting faults;further, because real-world experimental conditions vary frequently,it is essential for the proposed method to be robust undervarious conditions. The main feature of this study is that it involves the use of experimental results obtained under real-world conditions, to develop a fault detection algorithm and evaluate its validity. In addition, simu lations were performed using the real-world experimental data, wh ich includes newly logged experimental data after the algorithm was developed in order to evaluate the validity of the proposed algorithm. The simulat ion results show that the proposed algorithm detects faults accurately, thus, they prove its validity.","PeriodicalId":383435,"journal":{"name":"Journal of Mechanical Engineering and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental Study under Real-World Conditions to Develop Fault Detection for Automated Vehicles\",\"authors\":\"N. Hashimoto, U. Ozguner, M. Yokozuka, S. Kato, O. Matsumoto, S. Tsugawa\",\"doi\":\"10.5923/J.JMEA.20120205.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated vehicles can contribute to the improvement of transportation through their high capacity, increased safety, low emission and high efficiency. However, unstable conditions of automated mobile systems, which include automated vehicles and mobile robots) can cause serious problems, andthus, automated mobile system requiresto be highly reliable. The objective of this research is to develop on analgorith mfor detection faults (unstable condition) in an automated mobile system and to improve the overall reliability of this system. In this study, we in itially stored and updated a few patterns of data constellations under normal and unstable conditions for fault identification through real-world experiments. Multiple experiments were performed in a public urban area (with course distance per set beingapproximately1.1(km)), where several pedestrians, bicycles, and other robots were also present. The method used for detecting faults utilizes Mahalanobis distance, correlat ion coefficient, and linearization in order to enhance the accuracy of detecting faults;further, because real-world experimental conditions vary frequently,it is essential for the proposed method to be robust undervarious conditions. The main feature of this study is that it involves the use of experimental results obtained under real-world conditions, to develop a fault detection algorithm and evaluate its validity. In addition, simu lations were performed using the real-world experimental data, wh ich includes newly logged experimental data after the algorithm was developed in order to evaluate the validity of the proposed algorithm. The simulat ion results show that the proposed algorithm detects faults accurately, thus, they prove its validity.\",\"PeriodicalId\":383435,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.JMEA.20120205.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.JMEA.20120205.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自动驾驶汽车可以通过其高容量、更高的安全性、低排放和高效率来促进交通的改善。然而,自动化移动系统(包括自动车辆和移动机器人)的不稳定条件可能导致严重的问题,因此,自动化移动系统需要高度可靠。本研究的目的是开发一种用于自动移动系统故障(不稳定状态)检测的算法,以提高该系统的整体可靠性。在本研究中,我们首先存储和更新了正常和不稳定条件下的一些数据星座模式,通过实际实验进行故障识别。多个实验在公共城市区域进行(每组的路程距离约为1.1公里),其中也存在一些行人,自行车和其他机器人。用于故障检测的方法利用马氏距离、相关系数和线性化来提高故障检测的准确性;此外,由于实际实验条件经常变化,因此所提出的方法必须在各种条件下都具有鲁棒性。本研究的主要特点是利用在现实条件下获得的实验结果,开发故障检测算法并评估其有效性。此外,为了评估算法的有效性,还使用了实际实验数据进行了仿真,其中包括算法开发后新记录的实验数据。仿真结果表明,该算法能够准确地检测出故障,从而证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Study under Real-World Conditions to Develop Fault Detection for Automated Vehicles
Automated vehicles can contribute to the improvement of transportation through their high capacity, increased safety, low emission and high efficiency. However, unstable conditions of automated mobile systems, which include automated vehicles and mobile robots) can cause serious problems, andthus, automated mobile system requiresto be highly reliable. The objective of this research is to develop on analgorith mfor detection faults (unstable condition) in an automated mobile system and to improve the overall reliability of this system. In this study, we in itially stored and updated a few patterns of data constellations under normal and unstable conditions for fault identification through real-world experiments. Multiple experiments were performed in a public urban area (with course distance per set beingapproximately1.1(km)), where several pedestrians, bicycles, and other robots were also present. The method used for detecting faults utilizes Mahalanobis distance, correlat ion coefficient, and linearization in order to enhance the accuracy of detecting faults;further, because real-world experimental conditions vary frequently,it is essential for the proposed method to be robust undervarious conditions. The main feature of this study is that it involves the use of experimental results obtained under real-world conditions, to develop a fault detection algorithm and evaluate its validity. In addition, simu lations were performed using the real-world experimental data, wh ich includes newly logged experimental data after the algorithm was developed in order to evaluate the validity of the proposed algorithm. The simulat ion results show that the proposed algorithm detects faults accurately, thus, they prove its validity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automation and Leak Control System with Use of Clean Energy Supply (Compressed Air) Effect of an Overlapping Region on Damping due to Friction in Joined Plate Structures Comparative study of evolution of residual stress state by local mechanical tensioning and laser processing of ferritic and austenitic structural steel welds. Numerical Simulation of the Kinematic Behavior of a Twist Beam Suspension Using Finite Element Method Parametric Study of Nonlinear Beam Vibration Resting on Linear Elastic Foundation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1