广义标记多伯努利滤波器的测量驱动出生模型

Shoufeng Lin, B. Vo, S. Nordholm
{"title":"广义标记多伯努利滤波器的测量驱动出生模型","authors":"Shoufeng Lin, B. Vo, S. Nordholm","doi":"10.1109/ICCAIS.2016.7822442","DOIUrl":null,"url":null,"abstract":"This paper presents a measurement driven birth (MDB) model for the generalized labeled multi-Bernoulli (GLMB) filter. The MDB model adaptively generates target births based on measurement data, thereby eliminating the dependence of a priori knowledge of target birth distributions. Numerical results are provided to demonstrate the performance.","PeriodicalId":407031,"journal":{"name":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"329 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Measurement driven birth model for the generalized labeled multi-Bernoulli filter\",\"authors\":\"Shoufeng Lin, B. Vo, S. Nordholm\",\"doi\":\"10.1109/ICCAIS.2016.7822442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a measurement driven birth (MDB) model for the generalized labeled multi-Bernoulli (GLMB) filter. The MDB model adaptively generates target births based on measurement data, thereby eliminating the dependence of a priori knowledge of target birth distributions. Numerical results are provided to demonstrate the performance.\",\"PeriodicalId\":407031,\"journal\":{\"name\":\"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"329 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS.2016.7822442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2016.7822442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

提出了广义标记多伯努利(GLMB)滤波器的测量驱动生成(MDB)模型。MDB模型基于测量数据自适应生成目标出生,从而消除了对目标出生分布的先验知识的依赖。数值结果验证了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurement driven birth model for the generalized labeled multi-Bernoulli filter
This paper presents a measurement driven birth (MDB) model for the generalized labeled multi-Bernoulli (GLMB) filter. The MDB model adaptively generates target births based on measurement data, thereby eliminating the dependence of a priori knowledge of target birth distributions. Numerical results are provided to demonstrate the performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiple model box-particle cardinality balanced multi-target multi-Bernoulli filter for multiple maneuvering targets tracking A new modelling and identification approach for guaranteed inclusion of a voltage source inverter's output voltages Multi region segmentation algorithm based on edge preserving for molten pool image Parameter weighting for multi-dimensional fuzzy inference systems Conditional marked point process-based crowd counting in sparsely and moderately crowded scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1