基于领域先验知识的服务互联网集成解决方案设计

Hanchuan Xu, Xiao Wang, Yuxin Wang, Nan Li, Zhiying Tu, Zhongjie Wang, Xiaofei Xu
{"title":"基于领域先验知识的服务互联网集成解决方案设计","authors":"Hanchuan Xu, Xiao Wang, Yuxin Wang, Nan Li, Zhiying Tu, Zhongjie Wang, Xiaofei Xu","doi":"10.1109/SCC49832.2020.00065","DOIUrl":null,"url":null,"abstract":"Various types of services, such as web APIs, IoT services, O2O services, and many others, have flooded on the Internet. Interconnections among these services have resulted in a new phenomenon called “Internet of Services” (IoS). By IoS, people don’t need to request multiple services by themselves to fulfill their daily requirements, but it is an IoS platform that is responsible for constructing integrated solutions for them. Since user requirements (URs) are usually coarse-grained and transboundary, IoS platforms have to integrate services from multiple domains to fulfill the requirements. Considering there are too many available services in IoS, a big challenge is how to look for a tradeoff between the construction efficiency and the precision of final solutions. For this challenge, we introduce a framework and a platform for transboundary user requirement oriented solution design in IoS. The main idea is to make use of domain priori knowledge derived from the commonness and similarities among massive historical URs and among historical integrated service solutions(ISSs). Priori knowledge is classified into three types: requirement patterns (RPs), service patterns (SPs), and probabilistic matching matrix (PMM) between RPs and SPs. A UR is modeled in the form of an intention tree (I-Tree) along with a set of constraints on intention nodes, and then optimal RPs are selected to cover the I-Tree as much as possible. By taking advantage of the PMM, a set of SPs are filtered out and composed together to form the final ISS. Finally, the design of a platform supporting the above process is introduced.","PeriodicalId":274909,"journal":{"name":"2020 IEEE International Conference on Services Computing (SCC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Domain Priori Knowledge based Integrated Solution Design for Internet of Services\",\"authors\":\"Hanchuan Xu, Xiao Wang, Yuxin Wang, Nan Li, Zhiying Tu, Zhongjie Wang, Xiaofei Xu\",\"doi\":\"10.1109/SCC49832.2020.00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various types of services, such as web APIs, IoT services, O2O services, and many others, have flooded on the Internet. Interconnections among these services have resulted in a new phenomenon called “Internet of Services” (IoS). By IoS, people don’t need to request multiple services by themselves to fulfill their daily requirements, but it is an IoS platform that is responsible for constructing integrated solutions for them. Since user requirements (URs) are usually coarse-grained and transboundary, IoS platforms have to integrate services from multiple domains to fulfill the requirements. Considering there are too many available services in IoS, a big challenge is how to look for a tradeoff between the construction efficiency and the precision of final solutions. For this challenge, we introduce a framework and a platform for transboundary user requirement oriented solution design in IoS. The main idea is to make use of domain priori knowledge derived from the commonness and similarities among massive historical URs and among historical integrated service solutions(ISSs). Priori knowledge is classified into three types: requirement patterns (RPs), service patterns (SPs), and probabilistic matching matrix (PMM) between RPs and SPs. A UR is modeled in the form of an intention tree (I-Tree) along with a set of constraints on intention nodes, and then optimal RPs are selected to cover the I-Tree as much as possible. By taking advantage of the PMM, a set of SPs are filtered out and composed together to form the final ISS. Finally, the design of a platform supporting the above process is introduced.\",\"PeriodicalId\":274909,\"journal\":{\"name\":\"2020 IEEE International Conference on Services Computing (SCC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Services Computing (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC49832.2020.00065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC49832.2020.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

各种类型的服务,如web api、物联网服务、O2O服务等,已经在互联网上泛滥。这些服务之间的相互连接导致了一种被称为“服务互联网”(IoS)的新现象。通过IoS,人们不需要自己请求多种服务来满足日常需求,而是一个负责为他们构建集成解决方案的IoS平台。由于用户需求通常是粗粒度和跨界的,IoS平台必须集成来自多个领域的服务来满足需求。考虑到IoS中有太多可用的服务,一个巨大的挑战是如何在构建效率和最终解决方案的精确度之间寻找折衷。针对这一挑战,我们在IoS中引入了一个面向跨界用户需求的解决方案设计框架和平台。其主要思想是利用从大量历史ur和历史集成服务解决方案(iss)之间的共性和相似性中获得的领域先验知识。先验知识分为三类:需求模式、服务模式和需求模式与服务模式之间的概率匹配矩阵。UR以意图树(I-Tree)的形式建模,并在意图节点上设置一组约束,然后选择最优rp以尽可能覆盖I-Tree。通过利用PMM,一组SPs被滤除并组合在一起形成最终的ISS。最后,介绍了支持上述过程的平台的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Domain Priori Knowledge based Integrated Solution Design for Internet of Services
Various types of services, such as web APIs, IoT services, O2O services, and many others, have flooded on the Internet. Interconnections among these services have resulted in a new phenomenon called “Internet of Services” (IoS). By IoS, people don’t need to request multiple services by themselves to fulfill their daily requirements, but it is an IoS platform that is responsible for constructing integrated solutions for them. Since user requirements (URs) are usually coarse-grained and transboundary, IoS platforms have to integrate services from multiple domains to fulfill the requirements. Considering there are too many available services in IoS, a big challenge is how to look for a tradeoff between the construction efficiency and the precision of final solutions. For this challenge, we introduce a framework and a platform for transboundary user requirement oriented solution design in IoS. The main idea is to make use of domain priori knowledge derived from the commonness and similarities among massive historical URs and among historical integrated service solutions(ISSs). Priori knowledge is classified into three types: requirement patterns (RPs), service patterns (SPs), and probabilistic matching matrix (PMM) between RPs and SPs. A UR is modeled in the form of an intention tree (I-Tree) along with a set of constraints on intention nodes, and then optimal RPs are selected to cover the I-Tree as much as possible. By taking advantage of the PMM, a set of SPs are filtered out and composed together to form the final ISS. Finally, the design of a platform supporting the above process is introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the SCC 2020 Chairs A Process Convergence Approach for Crossover Services based on Message Flow Partition and Merging SCC 2020 Organizing Commitee An IoT-owned Service for Global IoT Device Discovery, Integration and (Re)use PETA: Privacy Enabled Task Allocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1