{"title":"优化视觉伺服系统的手/眼配置","authors":"Rajeev Sharma, S. Hutchinson","doi":"10.1109/ROBOT.1995.525281","DOIUrl":null,"url":null,"abstract":"The authors (1994) derived a quantitative measure of the ability of a camera setup to observe the changes in image features due to relative motion. This measure of motion perceptibility has many applications in evaluating a robot hand/eye setup with respect to the ease of achieving vision-based control, and steering away from singular-configurations. Motion perceptibility can be combined with the traditional notion of manipulability, into a composite perceptibility/manipulability measure. In this paper the authors demonstrate how this composite measure may be applied to a number of different problems involving relative hand/eye positioning and control. These problems include optimal camera placement, active camera trajectory planning, robot trajectory planning, and feature selection for visual servo control. The authors consider the general formulation of each of these problems, and several others, in terms of the motion perceptibility/manipulability measure and illustrate the solution for particular hand/eye configurations.","PeriodicalId":432931,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Robotics and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Optimizing hand/eye configuration for visual-servo systems\",\"authors\":\"Rajeev Sharma, S. Hutchinson\",\"doi\":\"10.1109/ROBOT.1995.525281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors (1994) derived a quantitative measure of the ability of a camera setup to observe the changes in image features due to relative motion. This measure of motion perceptibility has many applications in evaluating a robot hand/eye setup with respect to the ease of achieving vision-based control, and steering away from singular-configurations. Motion perceptibility can be combined with the traditional notion of manipulability, into a composite perceptibility/manipulability measure. In this paper the authors demonstrate how this composite measure may be applied to a number of different problems involving relative hand/eye positioning and control. These problems include optimal camera placement, active camera trajectory planning, robot trajectory planning, and feature selection for visual servo control. The authors consider the general formulation of each of these problems, and several others, in terms of the motion perceptibility/manipulability measure and illustrate the solution for particular hand/eye configurations.\",\"PeriodicalId\":432931,\"journal\":{\"name\":\"Proceedings of 1995 IEEE International Conference on Robotics and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1995 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1995.525281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1995.525281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing hand/eye configuration for visual-servo systems
The authors (1994) derived a quantitative measure of the ability of a camera setup to observe the changes in image features due to relative motion. This measure of motion perceptibility has many applications in evaluating a robot hand/eye setup with respect to the ease of achieving vision-based control, and steering away from singular-configurations. Motion perceptibility can be combined with the traditional notion of manipulability, into a composite perceptibility/manipulability measure. In this paper the authors demonstrate how this composite measure may be applied to a number of different problems involving relative hand/eye positioning and control. These problems include optimal camera placement, active camera trajectory planning, robot trajectory planning, and feature selection for visual servo control. The authors consider the general formulation of each of these problems, and several others, in terms of the motion perceptibility/manipulability measure and illustrate the solution for particular hand/eye configurations.