复杂高斯混合模型的近似查询应答

Mattis Hartwig, M. Gehrke, R. Möller
{"title":"复杂高斯混合模型的近似查询应答","authors":"Mattis Hartwig, M. Gehrke, R. Möller","doi":"10.1109/ICBK.2019.00019","DOIUrl":null,"url":null,"abstract":"Gaussian mixture models are widely used in a diverse range of research fields. If the number of components and dimensions grow high, the computational costs for answering queries become unreasonably high for practical use. Therefore approximation approaches are necessary to make complex Gaussian mixture models more usable. The need for approximation approaches is also driven by the relatively recent representations that theoretically allow unlimited number of mixture components (e.g. nonparametric Bayesian networks or infinite mixture models). In this paper we introduce an approximate inference algorithm that splits the existing algorithm for query answering into two steps and uses the knowledge from the first step to reduce unnecessary calculations in the second step while maintaining a defined error bound. In highly complex mixture models we observed significant time savings even with low error bounds.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Query Answering in Complex Gaussian Mixture Models\",\"authors\":\"Mattis Hartwig, M. Gehrke, R. Möller\",\"doi\":\"10.1109/ICBK.2019.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian mixture models are widely used in a diverse range of research fields. If the number of components and dimensions grow high, the computational costs for answering queries become unreasonably high for practical use. Therefore approximation approaches are necessary to make complex Gaussian mixture models more usable. The need for approximation approaches is also driven by the relatively recent representations that theoretically allow unlimited number of mixture components (e.g. nonparametric Bayesian networks or infinite mixture models). In this paper we introduce an approximate inference algorithm that splits the existing algorithm for query answering into two steps and uses the knowledge from the first step to reduce unnecessary calculations in the second step while maintaining a defined error bound. In highly complex mixture models we observed significant time savings even with low error bounds.\",\"PeriodicalId\":383917,\"journal\":{\"name\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2019.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高斯混合模型广泛应用于各种研究领域。如果组件和维度的数量增长得很高,那么回答查询的计算成本对于实际使用来说就会变得不合理地高。因此,近似方法是必要的,以使复杂的高斯混合模型更可用。对近似方法的需求也受到相对较新的表示的推动,理论上允许无限数量的混合成分(例如非参数贝叶斯网络或无限混合模型)。本文介绍了一种近似推理算法,该算法将现有的查询回答算法分成两步,并利用第一步的知识减少第二步的不必要计算,同时保持定义的误差范围。在高度复杂的混合模型中,即使误差范围很低,我们也观察到显著的时间节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximate Query Answering in Complex Gaussian Mixture Models
Gaussian mixture models are widely used in a diverse range of research fields. If the number of components and dimensions grow high, the computational costs for answering queries become unreasonably high for practical use. Therefore approximation approaches are necessary to make complex Gaussian mixture models more usable. The need for approximation approaches is also driven by the relatively recent representations that theoretically allow unlimited number of mixture components (e.g. nonparametric Bayesian networks or infinite mixture models). In this paper we introduce an approximate inference algorithm that splits the existing algorithm for query answering into two steps and uses the knowledge from the first step to reduce unnecessary calculations in the second step while maintaining a defined error bound. In highly complex mixture models we observed significant time savings even with low error bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Two-Stage Clustering Algorithm Based on Improved K-Means and Density Peak Clustering Matrix Profile XX: Finding and Visualizing Time Series Motifs of All Lengths using the Matrix Profile A Spatial Co-location Pattern Mining Algorithm Without Distance Thresholds Adaptive Structural Co-regularization for Unsupervised Multi-view Feature Selection Which Patient to Treat Next? Probabilistic Stream-Based Reasoning for Decision Support and Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1