用于贫血诊断的模糊Tsukamoto算法的实施(数据研究:

Rheni Aprilia Ningrum, Agus Priyanto, Ummi Athiyah
{"title":"用于贫血诊断的模糊Tsukamoto算法的实施(数据研究:","authors":"Rheni Aprilia Ningrum, Agus Priyanto, Ummi Athiyah","doi":"10.47701/infokes.v11i2.1303","DOIUrl":null,"url":null,"abstract":"Anemia is caused by a low hemoglobin condition in the human body. Low hemoglobin conditions can cause various symptoms, including fatigue, weakness, dizziness and others. The impact on anemia can reduce concentration, physical endurance and get sick easily. So it is necessary to detect early to diagnose anemia based on the symptoms experienced with maximum accuracy. Users only need to enter the value of symptoms experienced, namely the value of hb, bleeding and weakness, the system will calculate the symptom values using the Tsukamoto fuzzy algorithm. In calculations using the Tsukamoto fuzzy algorithm using the Python programming language, there are 4 stages, namely fuzzification, rule formation, inference engine and defuzzification. At the fuzzification stage, the input symptom value becomes a fuzzy value (0-1), then at the rule formation stage there are 18 rules of 3 symptoms and 3 diagnosis results. After obtaining a rule, it is followed by an inference engine that looks for the α-predicate value in each rule using the min function. After getting the α-predicate value, defuzzification is carried out to get the crisp value or the output value. With the multiple confusion matrix method, the accuracy of the resulting data from the Tsukamoto fuzzy algorithm and prediction data is 85%. This can be used by the community to easily detect anemia early through the website.","PeriodicalId":436974,"journal":{"name":"Infokes: Jurnal Ilmiah Rekam Medis dan Informatika Kesehatan","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementasi Algoritma Fuzzy Tsukamoto Untuk Diagnosis Penyakit Anemia (Studi Data: Rekam Medis Pasien Ibu RSIA Bunda Arif Purwokerto)\",\"authors\":\"Rheni Aprilia Ningrum, Agus Priyanto, Ummi Athiyah\",\"doi\":\"10.47701/infokes.v11i2.1303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anemia is caused by a low hemoglobin condition in the human body. Low hemoglobin conditions can cause various symptoms, including fatigue, weakness, dizziness and others. The impact on anemia can reduce concentration, physical endurance and get sick easily. So it is necessary to detect early to diagnose anemia based on the symptoms experienced with maximum accuracy. Users only need to enter the value of symptoms experienced, namely the value of hb, bleeding and weakness, the system will calculate the symptom values using the Tsukamoto fuzzy algorithm. In calculations using the Tsukamoto fuzzy algorithm using the Python programming language, there are 4 stages, namely fuzzification, rule formation, inference engine and defuzzification. At the fuzzification stage, the input symptom value becomes a fuzzy value (0-1), then at the rule formation stage there are 18 rules of 3 symptoms and 3 diagnosis results. After obtaining a rule, it is followed by an inference engine that looks for the α-predicate value in each rule using the min function. After getting the α-predicate value, defuzzification is carried out to get the crisp value or the output value. With the multiple confusion matrix method, the accuracy of the resulting data from the Tsukamoto fuzzy algorithm and prediction data is 85%. This can be used by the community to easily detect anemia early through the website.\",\"PeriodicalId\":436974,\"journal\":{\"name\":\"Infokes: Jurnal Ilmiah Rekam Medis dan Informatika Kesehatan\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infokes: Jurnal Ilmiah Rekam Medis dan Informatika Kesehatan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47701/infokes.v11i2.1303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infokes: Jurnal Ilmiah Rekam Medis dan Informatika Kesehatan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47701/infokes.v11i2.1303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

贫血是由人体内低血红蛋白引起的。低血红蛋白会引起各种症状,包括疲劳、虚弱、头晕等。对贫血的影响可以降低注意力,降低身体耐力,容易生病。因此,有必要及早发现,根据所经历的症状最大限度地诊断贫血。用户只需要输入所经历的症状值,即hb值、出血值和虚弱值,系统将使用冢本模糊算法计算症状值。在使用Python编程语言使用Tsukamoto模糊算法进行计算时,有4个阶段,即模糊化、规则形成、推理引擎和去模糊化。在模糊化阶段,输入的症状值变成一个模糊值(0-1),然后在规则形成阶段,有18条规则,3个症状和3个诊断结果。在获得规则后,随后是一个推理引擎,该引擎使用最小函数在每个规则中查找α-谓词值。得到α-谓词值后,进行去模糊化,得到清晰值或输出值。采用多重混淆矩阵法,冢本模糊算法与预测数据的结果数据准确率达到85%。这可以被社区用来通过网站轻松地早期检测贫血。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementasi Algoritma Fuzzy Tsukamoto Untuk Diagnosis Penyakit Anemia (Studi Data: Rekam Medis Pasien Ibu RSIA Bunda Arif Purwokerto)
Anemia is caused by a low hemoglobin condition in the human body. Low hemoglobin conditions can cause various symptoms, including fatigue, weakness, dizziness and others. The impact on anemia can reduce concentration, physical endurance and get sick easily. So it is necessary to detect early to diagnose anemia based on the symptoms experienced with maximum accuracy. Users only need to enter the value of symptoms experienced, namely the value of hb, bleeding and weakness, the system will calculate the symptom values using the Tsukamoto fuzzy algorithm. In calculations using the Tsukamoto fuzzy algorithm using the Python programming language, there are 4 stages, namely fuzzification, rule formation, inference engine and defuzzification. At the fuzzification stage, the input symptom value becomes a fuzzy value (0-1), then at the rule formation stage there are 18 rules of 3 symptoms and 3 diagnosis results. After obtaining a rule, it is followed by an inference engine that looks for the α-predicate value in each rule using the min function. After getting the α-predicate value, defuzzification is carried out to get the crisp value or the output value. With the multiple confusion matrix method, the accuracy of the resulting data from the Tsukamoto fuzzy algorithm and prediction data is 85%. This can be used by the community to easily detect anemia early through the website.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PERANCANGAN PROTOTYPE REKAM MEDIS ELEKTRONIK DI KLINIK PRATAMA POLTEKKES KEMENKES YOGYAKARTA PERANCANGAN SISTEM PENGENDALIAN DOKUMEN REKAM MEDIS DI PUSKESMAS MANGKUBUMI KOTA TASIKMALAYA PENGARUH LEADER MEMBER EXCHANGE (LMX) TERHADAP ORGANIZATIONAL CITIZENSHIP BEHAVIOR (OCB) UNIT REKAM MEDIS DI RSUD dr. HASRI AINUN HABIBIE ANALISIS KEBUTUHAN TENAGA KERJA BAGIAN PELAPORAN RUMAH SAKIT MENGGUNAKAN METODE ANALISIS BEBAN KERJA KESEHATAN (ABK KES) PREDIKSI KUNJUNGAN PASIEN RAWAT JALAN DI RSAU dr. SISWANTO LANUD ADI SOEMARMO KARANGANYAR TAHUN 2022-2026
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1