进化网络中的事件检测

Sarvenaz Choobdar, P. Ribeiro, Fernando M A Silva
{"title":"进化网络中的事件检测","authors":"Sarvenaz Choobdar, P. Ribeiro, Fernando M A Silva","doi":"10.1109/CASoN.2012.6412373","DOIUrl":null,"url":null,"abstract":"This paper describes a methodology for finding and describing significant events in time evolving complex networks. We first group the nodes of the network in clusters, according to their similarity in terms of a set of local properties such as degree and clustering coefficient. We then monitor the behavior of these groups over time, looking for significant changes on the size of the groups. These events are notable since they show that the position of a number of nodes in the network has changed. We describe this evolution by extracting the correspondent transition patterns. We examined our methodology on three different real network datasets. Our experiments show that the discovered rules are significant and can describe the occurring events.","PeriodicalId":431370,"journal":{"name":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Event detection in evolving networks\",\"authors\":\"Sarvenaz Choobdar, P. Ribeiro, Fernando M A Silva\",\"doi\":\"10.1109/CASoN.2012.6412373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a methodology for finding and describing significant events in time evolving complex networks. We first group the nodes of the network in clusters, according to their similarity in terms of a set of local properties such as degree and clustering coefficient. We then monitor the behavior of these groups over time, looking for significant changes on the size of the groups. These events are notable since they show that the position of a number of nodes in the network has changed. We describe this evolution by extracting the correspondent transition patterns. We examined our methodology on three different real network datasets. Our experiments show that the discovered rules are significant and can describe the occurring events.\",\"PeriodicalId\":431370,\"journal\":{\"name\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASoN.2012.6412373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2012.6412373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文描述了一种在时间演化的复杂网络中发现和描述重要事件的方法。我们首先根据网络节点在一组局部属性(如度和聚类系数)上的相似性,将网络节点分组成簇。然后,我们随着时间的推移监测这些群体的行为,寻找群体规模上的重大变化。这些事件值得注意,因为它们表明网络中许多节点的位置发生了变化。我们通过提取相应的转换模式来描述这种演变。我们在三个不同的真实网络数据集上检验了我们的方法。实验表明,发现的规则是有意义的,可以描述发生的事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Event detection in evolving networks
This paper describes a methodology for finding and describing significant events in time evolving complex networks. We first group the nodes of the network in clusters, according to their similarity in terms of a set of local properties such as degree and clustering coefficient. We then monitor the behavior of these groups over time, looking for significant changes on the size of the groups. These events are notable since they show that the position of a number of nodes in the network has changed. We describe this evolution by extracting the correspondent transition patterns. We examined our methodology on three different real network datasets. Our experiments show that the discovered rules are significant and can describe the occurring events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting Optimum-Path Forest clustering through harmony Search and its applications for intrusion detection in computer networks Graph-based cross-validated committees ensembles Automatic sentiment analysis of Twitter messages Identifying focal patterns in social networks Ontology-based Negotiation of security requirements in cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1