Illum信息

R. Raman, Haizi Yu, L. Varshney
{"title":"Illum信息","authors":"R. Raman, Haizi Yu, L. Varshney","doi":"10.1109/ITA.2017.8023479","DOIUrl":null,"url":null,"abstract":"Shannon's mutual information measures the degree of mutual dependence between two random variables. Two related information functionals have also been developed in the literature: multiinformation, a multivariate extension of mutual information; and lautum information, the Csiszár conjugate of mutual information. In this work, we define illum information, the multivariate extension of lautum information and the Csiszár conjugate of multiinformation. We provide operational interpretations of this functional, including in the problem of independence testing of a set of random variables. Further, we also provide informational characterizations of illum information such as the data processing inequality and the chain rule for distributions on tree-structured graphical models. Finally, as illustrative examples, we compute the illum information for Ising models and Gauss-Markov random fields.","PeriodicalId":305510,"journal":{"name":"2017 Information Theory and Applications Workshop (ITA)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Illum information\",\"authors\":\"R. Raman, Haizi Yu, L. Varshney\",\"doi\":\"10.1109/ITA.2017.8023479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shannon's mutual information measures the degree of mutual dependence between two random variables. Two related information functionals have also been developed in the literature: multiinformation, a multivariate extension of mutual information; and lautum information, the Csiszár conjugate of mutual information. In this work, we define illum information, the multivariate extension of lautum information and the Csiszár conjugate of multiinformation. We provide operational interpretations of this functional, including in the problem of independence testing of a set of random variables. Further, we also provide informational characterizations of illum information such as the data processing inequality and the chain rule for distributions on tree-structured graphical models. Finally, as illustrative examples, we compute the illum information for Ising models and Gauss-Markov random fields.\",\"PeriodicalId\":305510,\"journal\":{\"name\":\"2017 Information Theory and Applications Workshop (ITA)\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2017.8023479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2017.8023479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

香农互信息度量两个随机变量之间的相互依赖程度。文献中还发展了两个相关的信息功能:多信息,互信息的多元扩展;和lautum信息,互信息的Csiszár共轭。在这项工作中,我们定义了illum信息、lautum信息的多元扩展和多信息的Csiszár共轭。我们提供了这个函数的操作解释,包括一组随机变量的独立性测试问题。此外,我们还提供了诸如数据处理不等式和树状图模型上分布的链式规则等辅助信息的信息表征。最后,作为示例,我们计算了伊辛模型和高斯-马尔可夫随机场的照明信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Illum information
Shannon's mutual information measures the degree of mutual dependence between two random variables. Two related information functionals have also been developed in the literature: multiinformation, a multivariate extension of mutual information; and lautum information, the Csiszár conjugate of mutual information. In this work, we define illum information, the multivariate extension of lautum information and the Csiszár conjugate of multiinformation. We provide operational interpretations of this functional, including in the problem of independence testing of a set of random variables. Further, we also provide informational characterizations of illum information such as the data processing inequality and the chain rule for distributions on tree-structured graphical models. Finally, as illustrative examples, we compute the illum information for Ising models and Gauss-Markov random fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel index coding scheme and its application to coded caching Multidimensional index modulation in wireless communications Claude Shannon in Chess Review Device-aware routing and scheduling in multi-hop Device-to-Device networks Power-performance analysis of a simple one-bit transceiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1