单相能量回收电路的时钟配电网设计

N. Yamini, P. Sasipriya, V. S. K. Bhaaskaran
{"title":"单相能量回收电路的时钟配电网设计","authors":"N. Yamini, P. Sasipriya, V. S. K. Bhaaskaran","doi":"10.1109/ICNETS2.2017.8067969","DOIUrl":null,"url":null,"abstract":"Background/Objective: Energy recovery is one of the most promising methods for low power design methodologies. The main idea behind the energy recovery circuits is the use of a slowly rising and slowly falling AC power supply i.e., sinusoidal or trapezoidal clock signal. Hence, it is essential to design low power clocking schemes for such energy recovery circuits. This paper presents an efficient clocking scheme for the energy recovery circuits. Methods/Statistical Analysis: The single phase sinusoidal clock signal which is used to operate the energy recovery circuits is generated from the 2N2P resonant clock generator. The sinusoidal clock signal is routed to the energy recovery circuits through the H-tree clock distribution network. Findings: Single phase energy recovery circuit, namely, the Glitch free and Cascadable Adiabatic Logic (GFCAL) is used to validate the clock network design. 16 inverters are cascaded and connected to the output nodes of the clock tree, and the cascaded chain is driven by the clock signal. Conclusion/Improvement: The simulation results show that the 16-bit adiabatic inverter chain operated at 2GHz incur a power consumption of 184.1 μWatts and the conventional CMOS inverter chain of 16-bit operated at the same frequency incurs power dissipation of 190.2μWatts. All the simulations have been carried out using the industry standard Cadence® Virtuoso tool using 180nm technology library files.","PeriodicalId":413865,"journal":{"name":"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clock distribution network design for single phase energy recovery circuits\",\"authors\":\"N. Yamini, P. Sasipriya, V. S. K. Bhaaskaran\",\"doi\":\"10.1109/ICNETS2.2017.8067969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background/Objective: Energy recovery is one of the most promising methods for low power design methodologies. The main idea behind the energy recovery circuits is the use of a slowly rising and slowly falling AC power supply i.e., sinusoidal or trapezoidal clock signal. Hence, it is essential to design low power clocking schemes for such energy recovery circuits. This paper presents an efficient clocking scheme for the energy recovery circuits. Methods/Statistical Analysis: The single phase sinusoidal clock signal which is used to operate the energy recovery circuits is generated from the 2N2P resonant clock generator. The sinusoidal clock signal is routed to the energy recovery circuits through the H-tree clock distribution network. Findings: Single phase energy recovery circuit, namely, the Glitch free and Cascadable Adiabatic Logic (GFCAL) is used to validate the clock network design. 16 inverters are cascaded and connected to the output nodes of the clock tree, and the cascaded chain is driven by the clock signal. Conclusion/Improvement: The simulation results show that the 16-bit adiabatic inverter chain operated at 2GHz incur a power consumption of 184.1 μWatts and the conventional CMOS inverter chain of 16-bit operated at the same frequency incurs power dissipation of 190.2μWatts. All the simulations have been carried out using the industry standard Cadence® Virtuoso tool using 180nm technology library files.\",\"PeriodicalId\":413865,\"journal\":{\"name\":\"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNETS2.2017.8067969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNETS2.2017.8067969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景/目的:能量回收是低功耗设计方法中最有前途的方法之一。能量回收电路背后的主要思想是使用缓慢上升和缓慢下降的交流电源,即正弦或梯形时钟信号。因此,为这种能量回收电路设计低功耗时钟方案至关重要。提出了一种用于能量回收电路的高效时钟方案。方法/统计分析:用于操作能量回收电路的单相正弦时钟信号由2N2P谐振时钟发生器产生。正弦时钟信号通过h树时钟分配网络路由到能量恢复电路。研究结果:采用单相能量回收电路,即无故障级联绝热逻辑(GFCAL)来验证时钟网络设计。16台逆变器级联并连接到时钟树的输出节点,级联链由时钟信号驱动。结论/改进:仿真结果表明,工作在2GHz频率下的16位绝热逆变器链功耗为184.1 μWatts,而相同频率下的传统16位CMOS逆变器链功耗为190.2μWatts。所有的模拟都是使用行业标准的Cadence®Virtuoso工具进行的,使用180nm技术库文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clock distribution network design for single phase energy recovery circuits
Background/Objective: Energy recovery is one of the most promising methods for low power design methodologies. The main idea behind the energy recovery circuits is the use of a slowly rising and slowly falling AC power supply i.e., sinusoidal or trapezoidal clock signal. Hence, it is essential to design low power clocking schemes for such energy recovery circuits. This paper presents an efficient clocking scheme for the energy recovery circuits. Methods/Statistical Analysis: The single phase sinusoidal clock signal which is used to operate the energy recovery circuits is generated from the 2N2P resonant clock generator. The sinusoidal clock signal is routed to the energy recovery circuits through the H-tree clock distribution network. Findings: Single phase energy recovery circuit, namely, the Glitch free and Cascadable Adiabatic Logic (GFCAL) is used to validate the clock network design. 16 inverters are cascaded and connected to the output nodes of the clock tree, and the cascaded chain is driven by the clock signal. Conclusion/Improvement: The simulation results show that the 16-bit adiabatic inverter chain operated at 2GHz incur a power consumption of 184.1 μWatts and the conventional CMOS inverter chain of 16-bit operated at the same frequency incurs power dissipation of 190.2μWatts. All the simulations have been carried out using the industry standard Cadence® Virtuoso tool using 180nm technology library files.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Security protocols for Internet of Things: A survey Secure identity management in mobile cloud computing Vehicle license plate detection and recognition using non-blind image de-blurring algorithm A connectivity protocol for star topology using wireless sensor network Enhancing the efficiency of carry skip adder using MBFA-10T
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1