移动传感器网络空间函数估计的稀疏高斯过程

Bowen Lu, Dongbing Gu, Huosheng Hu, K. Mcdonald-Maier
{"title":"移动传感器网络空间函数估计的稀疏高斯过程","authors":"Bowen Lu, Dongbing Gu, Huosheng Hu, K. Mcdonald-Maier","doi":"10.1109/EST.2012.27","DOIUrl":null,"url":null,"abstract":"Gaussian process (GP) is well researched and used in machine learning field. Comparing with artificial neural network (ANN) and support vector regression (SVR), it provides additional covariance information for regression results. By exploiting this feature, an uncertainty based locational optimisation strategy combining with an entropy based data selection method for mobile sensor networks is presented in this paper. Centroidal Voronoi tessellation (CVT) is used as a locational optimisation framework and Informative Vector Machine (IVM) is applied for data selection. Simulations with different locational optimisation criteria are conducted and the results are given, which proved the effectiveness of presented strategy.","PeriodicalId":314247,"journal":{"name":"2012 Third International Conference on Emerging Security Technologies","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse Gaussian Process for Spatial Function Estimation with Mobile Sensor Networks\",\"authors\":\"Bowen Lu, Dongbing Gu, Huosheng Hu, K. Mcdonald-Maier\",\"doi\":\"10.1109/EST.2012.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian process (GP) is well researched and used in machine learning field. Comparing with artificial neural network (ANN) and support vector regression (SVR), it provides additional covariance information for regression results. By exploiting this feature, an uncertainty based locational optimisation strategy combining with an entropy based data selection method for mobile sensor networks is presented in this paper. Centroidal Voronoi tessellation (CVT) is used as a locational optimisation framework and Informative Vector Machine (IVM) is applied for data selection. Simulations with different locational optimisation criteria are conducted and the results are given, which proved the effectiveness of presented strategy.\",\"PeriodicalId\":314247,\"journal\":{\"name\":\"2012 Third International Conference on Emerging Security Technologies\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Conference on Emerging Security Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EST.2012.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Emerging Security Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EST.2012.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高斯过程(GP)在机器学习领域得到了广泛的研究和应用。与人工神经网络(ANN)和支持向量回归(SVR)相比,该方法为回归结果提供了额外的协方差信息。利用这一特点,提出了一种基于不确定性的移动传感器网络位置优化策略,并结合了基于熵的移动传感器网络数据选择方法。采用质心Voronoi镶嵌(CVT)作为定位优化框架,采用信息向量机(IVM)进行数据选择。采用不同的位置优化准则进行了仿真,并给出了仿真结果,验证了所提策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Gaussian Process for Spatial Function Estimation with Mobile Sensor Networks
Gaussian process (GP) is well researched and used in machine learning field. Comparing with artificial neural network (ANN) and support vector regression (SVR), it provides additional covariance information for regression results. By exploiting this feature, an uncertainty based locational optimisation strategy combining with an entropy based data selection method for mobile sensor networks is presented in this paper. Centroidal Voronoi tessellation (CVT) is used as a locational optimisation framework and Informative Vector Machine (IVM) is applied for data selection. Simulations with different locational optimisation criteria are conducted and the results are given, which proved the effectiveness of presented strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MultiMind: Multi-Brain Signal Fusion to Exceed the Power of a Single Brain Weightless Neural System Employing Simple Sensor Data for Efficient Real-Time Round-Corner, Junction and Doorway Detection for Autonomous System Path Planning in Smart Robotic Assisted Healthcare Wheelchairs FPGA-Based Platform for Real-Time Internet Optimization and Sequence Search Based Localization in Wireless Sensor Networks A Knowledge Fusion Toolkit for Decision Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1