异构艺术品数据集中一次目标检测

Prathmesh Madhu, Anna Meyer, Mathias Zinnen, Lara Mührenberg, Dirk Suckow, Torsten Bendschus, Corinna Reinhardt, Peter Bell, Ute Verstegen, Ronak Kosti, A. Maier, V. Christlein
{"title":"异构艺术品数据集中一次目标检测","authors":"Prathmesh Madhu, Anna Meyer, Mathias Zinnen, Lara Mührenberg, Dirk Suckow, Torsten Bendschus, Corinna Reinhardt, Peter Bell, Ute Verstegen, Ronak Kosti, A. Maier, V. Christlein","doi":"10.1109/IPTA54936.2022.9784141","DOIUrl":null,"url":null,"abstract":"Christian archeologists face many challenges in understanding visual narration through artwork images. This understanding is essential to access underlying semantic in-formation. Therefore, narrative elements (objects) need to be labeled, compared, and contextualized by experts, which takes an enormous amount of time and effort. Our work aims to reduce labeling costs by using one-shot object detection to generate a labeled database from unannotated images. Novel object categories can be defined broadly and annotated using visual examples of narrative elements without training exclusively for such objects. In this work, we propose two ways of using contextual information as data augmentation to improve the detection performance. Furthermore, we introduce a multi-relation detector to our framework, which extracts global, local, and patch-based relations of the image. Additionally, we evaluate the use of contrastive learning. We use data from Christian archeology (CHA) and art history - IconArt-v2 (IA). Our context encoding approach improves the typical fine-tuning approach in terms of mean average precision (mAP) by about 3.5 % (4 %) at 0.25 intersection over union (IoU) for UnSeen categories, and 6 % (1.5 %) for Seen categories in CHA (IA). To the best of our knowledge, our work is the first to explore few shot object detection on heterogeneous artistic data by investigating evaluation methods and data augmentation strategies. We will release the code and models after acceptance of the work.","PeriodicalId":381729,"journal":{"name":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"One-Shot Object Detection in Heterogeneous Artwork Datasets\",\"authors\":\"Prathmesh Madhu, Anna Meyer, Mathias Zinnen, Lara Mührenberg, Dirk Suckow, Torsten Bendschus, Corinna Reinhardt, Peter Bell, Ute Verstegen, Ronak Kosti, A. Maier, V. Christlein\",\"doi\":\"10.1109/IPTA54936.2022.9784141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Christian archeologists face many challenges in understanding visual narration through artwork images. This understanding is essential to access underlying semantic in-formation. Therefore, narrative elements (objects) need to be labeled, compared, and contextualized by experts, which takes an enormous amount of time and effort. Our work aims to reduce labeling costs by using one-shot object detection to generate a labeled database from unannotated images. Novel object categories can be defined broadly and annotated using visual examples of narrative elements without training exclusively for such objects. In this work, we propose two ways of using contextual information as data augmentation to improve the detection performance. Furthermore, we introduce a multi-relation detector to our framework, which extracts global, local, and patch-based relations of the image. Additionally, we evaluate the use of contrastive learning. We use data from Christian archeology (CHA) and art history - IconArt-v2 (IA). Our context encoding approach improves the typical fine-tuning approach in terms of mean average precision (mAP) by about 3.5 % (4 %) at 0.25 intersection over union (IoU) for UnSeen categories, and 6 % (1.5 %) for Seen categories in CHA (IA). To the best of our knowledge, our work is the first to explore few shot object detection on heterogeneous artistic data by investigating evaluation methods and data augmentation strategies. We will release the code and models after acceptance of the work.\",\"PeriodicalId\":381729,\"journal\":{\"name\":\"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"254 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA54936.2022.9784141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA54936.2022.9784141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基督教考古学家在通过艺术品图像理解视觉叙事方面面临许多挑战。这种理解对于访问底层语义信息至关重要。因此,叙事元素(对象)需要由专家进行标记、比较和情境化,这需要花费大量的时间和精力。我们的工作旨在通过使用一次性目标检测从未注释的图像中生成标记数据库来降低标记成本。新的对象类别可以广泛地定义,并使用叙事元素的视觉示例进行注释,而无需专门针对此类对象进行训练。在这项工作中,我们提出了两种使用上下文信息作为数据增强的方法来提高检测性能。此外,我们在我们的框架中引入了一个多关系检测器,它可以提取图像的全局、局部和基于补丁的关系。此外,我们评估对比学习的使用。我们使用的数据来自基督教考古学(CHA)和艺术史- IconArt-v2 (IA)。我们的上下文编码方法在平均平均精度(mAP)方面改进了典型的微调方法,对于未见类别,在0.25交集与联合(IoU)下提高了约3.5%(4%),对于CHA (IA)中的已见类别,提高了6%(1.5%)。据我们所知,我们的工作是第一个通过研究评估方法和数据增强策略来探索异构艺术数据上的少数镜头物体检测。我们将在工作验收后发布代码和模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One-Shot Object Detection in Heterogeneous Artwork Datasets
Christian archeologists face many challenges in understanding visual narration through artwork images. This understanding is essential to access underlying semantic in-formation. Therefore, narrative elements (objects) need to be labeled, compared, and contextualized by experts, which takes an enormous amount of time and effort. Our work aims to reduce labeling costs by using one-shot object detection to generate a labeled database from unannotated images. Novel object categories can be defined broadly and annotated using visual examples of narrative elements without training exclusively for such objects. In this work, we propose two ways of using contextual information as data augmentation to improve the detection performance. Furthermore, we introduce a multi-relation detector to our framework, which extracts global, local, and patch-based relations of the image. Additionally, we evaluate the use of contrastive learning. We use data from Christian archeology (CHA) and art history - IconArt-v2 (IA). Our context encoding approach improves the typical fine-tuning approach in terms of mean average precision (mAP) by about 3.5 % (4 %) at 0.25 intersection over union (IoU) for UnSeen categories, and 6 % (1.5 %) for Seen categories in CHA (IA). To the best of our knowledge, our work is the first to explore few shot object detection on heterogeneous artistic data by investigating evaluation methods and data augmentation strategies. We will release the code and models after acceptance of the work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Special Session 3: Visual Computing in Digital Humanities Complex Texture Features Learned by Applying Randomized Neural Network on Graphs AAEGAN Optimization by Purposeful Noise Injection for the Generation of Bright-Field Brain Organoid Images Towards Fast and Accurate Intimate Contact Recognition through Video Analysis Draco-Based Selective Crypto-Compression Method of 3D objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1