心房颤动与正常人左心房血流动力学

Matteo Falanga, A. Masci, A. Chiaravalloti, F. Ansaloni, C. Tomasi, C. Corsi
{"title":"心房颤动与正常人左心房血流动力学","authors":"Matteo Falanga, A. Masci, A. Chiaravalloti, F. Ansaloni, C. Tomasi, C. Corsi","doi":"10.23919/cinc53138.2021.9662785","DOIUrl":null,"url":null,"abstract":"Atrial Fibrillation (AF) is associated with a five-fold increase in the risk of cerebrovascular events. Recent studies suggest that a computational fluid-dynamics (CFD) approach could provide insights on AF mechanisms thus potentially allowing a quantitative assessment of cardioembolic risk. The goal of this study was to use a previously developed patient specific CFD model of the left atrium (LA) to enhance differences in blood flow in AF patients and normal subjects. In this study we computed LA blood flow and derived parameters in normal subjects (NL), patients affected by paroxysmal AF (PAR-AF) and patients affected by persistent AF (PER-AF). Results showed mean peak velocities continuously decreasing from NL to PER-AF groups. In agreement, a lower number of vortex structures was observed in PER-AF with respect to PAR-AF and NL, thus limiting an effective washout of the LA and the left atrial appendage (LAA). Velocities at the LAA ostium and inside the LAA were also strongly reduced showing a limited washout effect as confirmed by blood stasis in terms of number of particles still present after five cardiac cycles (NL: 5±2, PAR-AF: 18±3, PER-AF: 41±10). The developed approach quantifies differences in LA hemodynamic between AF patients and NL.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Left Atrium Hemodynamic in Atrial Fibrillation and Normal Subjects\",\"authors\":\"Matteo Falanga, A. Masci, A. Chiaravalloti, F. Ansaloni, C. Tomasi, C. Corsi\",\"doi\":\"10.23919/cinc53138.2021.9662785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atrial Fibrillation (AF) is associated with a five-fold increase in the risk of cerebrovascular events. Recent studies suggest that a computational fluid-dynamics (CFD) approach could provide insights on AF mechanisms thus potentially allowing a quantitative assessment of cardioembolic risk. The goal of this study was to use a previously developed patient specific CFD model of the left atrium (LA) to enhance differences in blood flow in AF patients and normal subjects. In this study we computed LA blood flow and derived parameters in normal subjects (NL), patients affected by paroxysmal AF (PAR-AF) and patients affected by persistent AF (PER-AF). Results showed mean peak velocities continuously decreasing from NL to PER-AF groups. In agreement, a lower number of vortex structures was observed in PER-AF with respect to PAR-AF and NL, thus limiting an effective washout of the LA and the left atrial appendage (LAA). Velocities at the LAA ostium and inside the LAA were also strongly reduced showing a limited washout effect as confirmed by blood stasis in terms of number of particles still present after five cardiac cycles (NL: 5±2, PAR-AF: 18±3, PER-AF: 41±10). The developed approach quantifies differences in LA hemodynamic between AF patients and NL.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心房颤动(AF)与脑血管事件风险增加5倍相关。最近的研究表明,计算流体动力学(CFD)方法可以深入了解房颤的机制,从而有可能定量评估心脏栓塞的风险。本研究的目的是使用先前开发的患者特异性左心房(LA) CFD模型来增强房颤患者和正常受试者的血流量差异。在这项研究中,我们计算了正常受试者(NL)、阵发性房颤(PAR-AF)患者和持续性房颤(PER-AF)患者的LA血流量和衍生参数。结果显示,从NL组到PER-AF组,平均峰值速度持续下降。与此一致的是,相对于PAR-AF和NL, PER-AF中观察到的漩涡结构数量较少,从而限制了LA和左房附件(LAA)的有效冲洗。LAA口和LAA内部的速度也强烈降低,显示出有限的洗脱效应,这一点在5个心动周期后仍存在的颗粒数量方面得到血瘀证实(NL: 5±2,PAR-AF: 18±3,PER-AF: 41±10)。该方法量化了AF患者和NL患者LA血流动力学的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Left Atrium Hemodynamic in Atrial Fibrillation and Normal Subjects
Atrial Fibrillation (AF) is associated with a five-fold increase in the risk of cerebrovascular events. Recent studies suggest that a computational fluid-dynamics (CFD) approach could provide insights on AF mechanisms thus potentially allowing a quantitative assessment of cardioembolic risk. The goal of this study was to use a previously developed patient specific CFD model of the left atrium (LA) to enhance differences in blood flow in AF patients and normal subjects. In this study we computed LA blood flow and derived parameters in normal subjects (NL), patients affected by paroxysmal AF (PAR-AF) and patients affected by persistent AF (PER-AF). Results showed mean peak velocities continuously decreasing from NL to PER-AF groups. In agreement, a lower number of vortex structures was observed in PER-AF with respect to PAR-AF and NL, thus limiting an effective washout of the LA and the left atrial appendage (LAA). Velocities at the LAA ostium and inside the LAA were also strongly reduced showing a limited washout effect as confirmed by blood stasis in terms of number of particles still present after five cardiac cycles (NL: 5±2, PAR-AF: 18±3, PER-AF: 41±10). The developed approach quantifies differences in LA hemodynamic between AF patients and NL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Hydroxychloroquine Dosage on the Occurrence of Arrhythmia in COVID-19 Infected Ventricle Guinea Pig ECG Changes under the Effect of New Drug Candidate TP28b Electrocardiographic Imaging of Sinus Rhythm in Pig Hearts Using Bayesian Maximum A Posteriori Estimation Sensitivity Analysis and Parameter Identification of a Cardiovascular Model in Aortic Stenosis Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1