基于模糊聚类技术的数值离散化

A. Bueno-Crespo, Raquel Martínez-España, Isabel Maria Timon-Perez, Jesús A. Soto
{"title":"基于模糊聚类技术的数值离散化","authors":"A. Bueno-Crespo, Raquel Martínez-España, Isabel Maria Timon-Perez, Jesús A. Soto","doi":"10.1109/IE.2017.37","DOIUrl":null,"url":null,"abstract":"The numerical value discretization is an important task of the data preprocessing phase within the intelligent data analysis. This process allows us to reduce the number of values (among other advantages) with which techniques work, reducing the computational cost when it comes to working with large amounts of data. In this paper a numerical value discretization technique is proposed. Specifically, we discretize numerical values using a type of Cauchy distribution obtained from fuzzy clustering technique, being this technique a modification of the well-known Fuzzy C-Means clustering technique. Finally, to test the quality of the membership function we use a neural network technique over several datasets. The results obtained are compared and validated by means of statistical tests, obtaining satisfactory results.","PeriodicalId":306693,"journal":{"name":"2017 International Conference on Intelligent Environments (IE)","volume":"23 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discretizing Numerical Values by a Fuzzy Clustering Technique\",\"authors\":\"A. Bueno-Crespo, Raquel Martínez-España, Isabel Maria Timon-Perez, Jesús A. Soto\",\"doi\":\"10.1109/IE.2017.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerical value discretization is an important task of the data preprocessing phase within the intelligent data analysis. This process allows us to reduce the number of values (among other advantages) with which techniques work, reducing the computational cost when it comes to working with large amounts of data. In this paper a numerical value discretization technique is proposed. Specifically, we discretize numerical values using a type of Cauchy distribution obtained from fuzzy clustering technique, being this technique a modification of the well-known Fuzzy C-Means clustering technique. Finally, to test the quality of the membership function we use a neural network technique over several datasets. The results obtained are compared and validated by means of statistical tests, obtaining satisfactory results.\",\"PeriodicalId\":306693,\"journal\":{\"name\":\"2017 International Conference on Intelligent Environments (IE)\",\"volume\":\"23 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Intelligent Environments (IE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IE.2017.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Intelligent Environments (IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IE.2017.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数值离散化是智能数据分析中数据预处理阶段的一项重要任务。这个过程使我们能够减少与技术一起工作的值的数量(以及其他优点),从而在处理大量数据时降低计算成本。本文提出了一种数值离散化技术。具体来说,我们使用一种由模糊聚类技术得到的柯西分布来离散数值,这种技术是对著名的模糊c均值聚类技术的改进。最后,为了测试隶属函数的质量,我们在多个数据集上使用了神经网络技术。通过统计检验对所得结果进行了比较和验证,得到了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discretizing Numerical Values by a Fuzzy Clustering Technique
The numerical value discretization is an important task of the data preprocessing phase within the intelligent data analysis. This process allows us to reduce the number of values (among other advantages) with which techniques work, reducing the computational cost when it comes to working with large amounts of data. In this paper a numerical value discretization technique is proposed. Specifically, we discretize numerical values using a type of Cauchy distribution obtained from fuzzy clustering technique, being this technique a modification of the well-known Fuzzy C-Means clustering technique. Finally, to test the quality of the membership function we use a neural network technique over several datasets. The results obtained are compared and validated by means of statistical tests, obtaining satisfactory results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding Collaboration in Global Software Engineering (GSE) Teams with the Use of Sensors: Introducing a Multi-sensor Setting for Observing Social and Human Aspects in Project Management An Application to Enrich the Study of Auditory Emotion Recognition Searching for Behavior Patterns of Students in Different Training Modalities through Learning Management Systems Computational Sustainability for Smart City Design Relation Extraction via Position-Enhanced Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1