{"title":"基于图的抽取摘要子模块选择","authors":"Hui-Ching Lin, J. Bilmes, Shasha Xie","doi":"10.1109/ASRU.2009.5373486","DOIUrl":null,"url":null,"abstract":"We propose a novel approach for unsupervised extractive summarization. Our approach builds a semantic graph for the document to be summarized. Summary extraction is then formulated as optimizing submodular functions defined on the semantic graph. The optimization is theoretically guaranteed to be near-optimal under the framework of submodularity. Extensive experiments on the ICSI meeting summarization task on both human transcripts and automatic speech recognition (ASR) outputs show that the graph-based submodular selection approach consistently outperforms the maximum marginal relevance (MMR) approach, a concept-based approach using integer linear programming (ILP), and a recursive graph-based ranking algorithm using Google's PageRank.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":"{\"title\":\"Graph-based submodular selection for extractive summarization\",\"authors\":\"Hui-Ching Lin, J. Bilmes, Shasha Xie\",\"doi\":\"10.1109/ASRU.2009.5373486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel approach for unsupervised extractive summarization. Our approach builds a semantic graph for the document to be summarized. Summary extraction is then formulated as optimizing submodular functions defined on the semantic graph. The optimization is theoretically guaranteed to be near-optimal under the framework of submodularity. Extensive experiments on the ICSI meeting summarization task on both human transcripts and automatic speech recognition (ASR) outputs show that the graph-based submodular selection approach consistently outperforms the maximum marginal relevance (MMR) approach, a concept-based approach using integer linear programming (ILP), and a recursive graph-based ranking algorithm using Google's PageRank.\",\"PeriodicalId\":292194,\"journal\":{\"name\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2009.5373486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph-based submodular selection for extractive summarization
We propose a novel approach for unsupervised extractive summarization. Our approach builds a semantic graph for the document to be summarized. Summary extraction is then formulated as optimizing submodular functions defined on the semantic graph. The optimization is theoretically guaranteed to be near-optimal under the framework of submodularity. Extensive experiments on the ICSI meeting summarization task on both human transcripts and automatic speech recognition (ASR) outputs show that the graph-based submodular selection approach consistently outperforms the maximum marginal relevance (MMR) approach, a concept-based approach using integer linear programming (ILP), and a recursive graph-based ranking algorithm using Google's PageRank.