传感器选择:与其他选择方案比较,采用改进的riccati方程法

U. Ramdaras, F. Absil
{"title":"传感器选择:与其他选择方案比较,采用改进的riccati方程法","authors":"U. Ramdaras, F. Absil","doi":"10.1109/ICIF.2007.4408002","DOIUrl":null,"url":null,"abstract":"In this paper a comparison is made between a sensor selection algorithm (SSA) based on the modified Riccati equation (MRE) on the one hand, and a random sensor selection (RSS) or a fixed sensor selection (FSS) scheme on the other hand. The goal is to investigate the benefits the MRE SSA yields compared to the other selection schemes. The MRE SSA is capable of handling sensors with probability of detection pd < 1 and performs sensor selection based on various expected performance criteria in a target tracking scenario. For all three selection schemes the particle filtering technique has been used for target tracking with an adaption for missed detections in the case of pd < 1. Results are compared using multiple runs with simulated data for a single, moving target and two stationary radars. One sensor yields range, Doppler and bearing information, the other range and bearing information. The analysis includes the quality of the state estimate and the sensor selection strategy.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Sensor selection: the modified riccati equation approach compared with other selection schemes\",\"authors\":\"U. Ramdaras, F. Absil\",\"doi\":\"10.1109/ICIF.2007.4408002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a comparison is made between a sensor selection algorithm (SSA) based on the modified Riccati equation (MRE) on the one hand, and a random sensor selection (RSS) or a fixed sensor selection (FSS) scheme on the other hand. The goal is to investigate the benefits the MRE SSA yields compared to the other selection schemes. The MRE SSA is capable of handling sensors with probability of detection pd < 1 and performs sensor selection based on various expected performance criteria in a target tracking scenario. For all three selection schemes the particle filtering technique has been used for target tracking with an adaption for missed detections in the case of pd < 1. Results are compared using multiple runs with simulated data for a single, moving target and two stationary radars. One sensor yields range, Doppler and bearing information, the other range and bearing information. The analysis includes the quality of the state estimate and the sensor selection strategy.\",\"PeriodicalId\":298941,\"journal\":{\"name\":\"2007 10th International Conference on Information Fusion\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 10th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2007.4408002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文将基于改进Riccati方程(MRE)的传感器选择算法(SSA)与随机传感器选择(RSS)或固定传感器选择(FSS)方案进行了比较。目的是研究与其他选择方案相比,MRE SSA的收益。MRE SSA能够处理探测概率pd < 1的传感器,并根据目标跟踪场景中的各种预期性能标准进行传感器选择。对于所有三种选择方案,粒子滤波技术已用于目标跟踪,并在pd < 1的情况下自适应遗漏检测。对单个运动目标和两台静止雷达的模拟数据进行了多次运行比较。一个传感器输出距离、多普勒和方位信息,另一个传感器输出距离和方位信息。分析包括状态估计的质量和传感器的选择策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensor selection: the modified riccati equation approach compared with other selection schemes
In this paper a comparison is made between a sensor selection algorithm (SSA) based on the modified Riccati equation (MRE) on the one hand, and a random sensor selection (RSS) or a fixed sensor selection (FSS) scheme on the other hand. The goal is to investigate the benefits the MRE SSA yields compared to the other selection schemes. The MRE SSA is capable of handling sensors with probability of detection pd < 1 and performs sensor selection based on various expected performance criteria in a target tracking scenario. For all three selection schemes the particle filtering technique has been used for target tracking with an adaption for missed detections in the case of pd < 1. Results are compared using multiple runs with simulated data for a single, moving target and two stationary radars. One sensor yields range, Doppler and bearing information, the other range and bearing information. The analysis includes the quality of the state estimate and the sensor selection strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-autonomous reference data generation for perception performance evaluation Track association and fusion with heterogeneous local trackers Distributed detection of a nuclear radioactive source using fusion of correlated decisions Distributed data fusion algorithms for tracking a maneuvering target Multi agent systems for flexible and robust Bayesian information fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1