用黄金标准视觉输入生成图像描述:动机、评估和基线

Josiah Wang, R. Gaizauskas
{"title":"用黄金标准视觉输入生成图像描述:动机、评估和基线","authors":"Josiah Wang, R. Gaizauskas","doi":"10.18653/v1/W15-4722","DOIUrl":null,"url":null,"abstract":"In this paper, we present the task of generating image descriptions with gold standard visual detections as input, rather than directly from an image. This allows the Natural Language Generation community to focus on the text generation process, rather than dealing with the noise and complications arising from the visual detection process. We propose a fine-grained evaluation metric specifically for evaluating the content selection capabilities of image description generation systems. To demonstrate the evaluation metric on the task, several baselines are presented using bounding box information and textual information as priors for content selection. The baselines are evaluated using the proposed metric, showing that the fine-grained metric is useful for evaluating the content selection phase of an image description generation system.","PeriodicalId":307841,"journal":{"name":"European Workshop on Natural Language Generation","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Generating Image Descriptions with Gold Standard Visual Inputs: Motivation, Evaluation and Baselines\",\"authors\":\"Josiah Wang, R. Gaizauskas\",\"doi\":\"10.18653/v1/W15-4722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the task of generating image descriptions with gold standard visual detections as input, rather than directly from an image. This allows the Natural Language Generation community to focus on the text generation process, rather than dealing with the noise and complications arising from the visual detection process. We propose a fine-grained evaluation metric specifically for evaluating the content selection capabilities of image description generation systems. To demonstrate the evaluation metric on the task, several baselines are presented using bounding box information and textual information as priors for content selection. The baselines are evaluated using the proposed metric, showing that the fine-grained metric is useful for evaluating the content selection phase of an image description generation system.\",\"PeriodicalId\":307841,\"journal\":{\"name\":\"European Workshop on Natural Language Generation\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Workshop on Natural Language Generation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W15-4722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Natural Language Generation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W15-4722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们提出了以金标准视觉检测作为输入而不是直接从图像生成图像描述的任务。这使得自然语言生成社区专注于文本生成过程,而不是处理视觉检测过程中产生的噪声和复杂性。我们提出了一个细粒度的评估指标,专门用于评估图像描述生成系统的内容选择能力。为了演示任务的评估度量,使用边界框信息和文本信息作为内容选择的先验,给出了几个基线。使用提出的度量来评估基线,表明细粒度度量对于评估图像描述生成系统的内容选择阶段是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating Image Descriptions with Gold Standard Visual Inputs: Motivation, Evaluation and Baselines
In this paper, we present the task of generating image descriptions with gold standard visual detections as input, rather than directly from an image. This allows the Natural Language Generation community to focus on the text generation process, rather than dealing with the noise and complications arising from the visual detection process. We propose a fine-grained evaluation metric specifically for evaluating the content selection capabilities of image description generation systems. To demonstrate the evaluation metric on the task, several baselines are presented using bounding box information and textual information as priors for content selection. The baselines are evaluated using the proposed metric, showing that the fine-grained metric is useful for evaluating the content selection phase of an image description generation system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Natural Language Generation from Pictographs A Personal Storytelling about Your Favorite Data Topic Transition Strategies for an Information-Giving Agent Sentence Ordering in Electronic Navigational Chart Companion Text Generation Generating Récit from Sensor Data: Evaluation of a Task Model for Story Planning and Preliminary Experiments with GPS Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1