经典逻辑、直觉逻辑和仿射逻辑的统一语义和证明系统

Chuck C. Liang
{"title":"经典逻辑、直觉逻辑和仿射逻辑的统一语义和证明系统","authors":"Chuck C. Liang","doi":"10.1145/2933575.2933581","DOIUrl":null,"url":null,"abstract":"This paper modifies our previous work in combining classical logic with intuitionistic logic [16], [17] to also include affine linear logic, resulting in a system we call Affine Control Logic. A propositional system with six binary connectives is defined and given a phase space interpretation. Choosing classical, intuitionistic or affine reasoning is entirely dependent on the subformula property. Moreover, the connectives of these logics can mix without restriction. We give a sound and complete sequent calculus that requires novel proof transformations for cut elimination. Compared to linear logic, classical fragments of proofs are better isolated from non-classical fragments. One of our goals is to allow non-classical restrictions to coexist with computational interpretations of classical logic such as found in the λμ calculus. In fact, we show that the transition between different modes of proof, classical, intuitionistic and affine, can be interpreted by delimited control operators. We also discuss how to extend the definition of focused proofs to this logic.","PeriodicalId":206395,"journal":{"name":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unified Semantics and Proof System for Classical, Intuitionistic and Affine Logics\",\"authors\":\"Chuck C. Liang\",\"doi\":\"10.1145/2933575.2933581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper modifies our previous work in combining classical logic with intuitionistic logic [16], [17] to also include affine linear logic, resulting in a system we call Affine Control Logic. A propositional system with six binary connectives is defined and given a phase space interpretation. Choosing classical, intuitionistic or affine reasoning is entirely dependent on the subformula property. Moreover, the connectives of these logics can mix without restriction. We give a sound and complete sequent calculus that requires novel proof transformations for cut elimination. Compared to linear logic, classical fragments of proofs are better isolated from non-classical fragments. One of our goals is to allow non-classical restrictions to coexist with computational interpretations of classical logic such as found in the λμ calculus. In fact, we show that the transition between different modes of proof, classical, intuitionistic and affine, can be interpreted by delimited control operators. We also discuss how to extend the definition of focused proofs to this logic.\",\"PeriodicalId\":206395,\"journal\":{\"name\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2933575.2933581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933575.2933581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文修改了我们之前的工作,将经典逻辑与直觉逻辑[16],[17]结合起来,也包括仿射线性逻辑,从而形成一个我们称之为仿射控制逻辑的系统。定义了一个具有六个二元连接词的命题系统,并给出了相空间解释。选择经典、直觉或仿射推理完全取决于子公式的性质。此外,这些逻辑的连接词可以不受限制地混合使用。我们给出了一个健全完备的序列演算,它需要新的证明变换来进行切消。与线性逻辑相比,经典证明片段能更好地与非经典证明片段分离。我们的目标之一是允许非经典限制与经典逻辑的计算解释共存,例如在λμ微积分中发现的。事实上,我们证明了经典、直觉和仿射不同证明模式之间的转换可以用定界控制算子来解释。我们还讨论了如何将聚焦证明的定义扩展到这个逻辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unified Semantics and Proof System for Classical, Intuitionistic and Affine Logics
This paper modifies our previous work in combining classical logic with intuitionistic logic [16], [17] to also include affine linear logic, resulting in a system we call Affine Control Logic. A propositional system with six binary connectives is defined and given a phase space interpretation. Choosing classical, intuitionistic or affine reasoning is entirely dependent on the subformula property. Moreover, the connectives of these logics can mix without restriction. We give a sound and complete sequent calculus that requires novel proof transformations for cut elimination. Compared to linear logic, classical fragments of proofs are better isolated from non-classical fragments. One of our goals is to allow non-classical restrictions to coexist with computational interpretations of classical logic such as found in the λμ calculus. In fact, we show that the transition between different modes of proof, classical, intuitionistic and affine, can be interpreted by delimited control operators. We also discuss how to extend the definition of focused proofs to this logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative Algebraic Reasoning Differential Refinement Logic* Minimization of Symbolic Tree Automata Graphs of relational structures: restricted types The Complexity of Coverability in ν-Petri Nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1