基于卷积神经网络的烟雾与火灾探测

E. S. Wahyuni, Muhammad Hendri
{"title":"基于卷积神经网络的烟雾与火灾探测","authors":"E. S. Wahyuni, Muhammad Hendri","doi":"10.26760/elkomika.v7i3.455","DOIUrl":null,"url":null,"abstract":"ABSTRAK Deteksi api dan asap adalah langkah pertama sebagai deteksi dini kebakaran. Deteksi dini kebakaran berdasarkan pemrosesan gambar dianggap mampu memberikan hasil yang efektif. Pilihan metode deteksi adalah kunci penting. Metode ekstraksi fitur berdasarkan analisis statistik dan analisis dinamis kadang-kadang memberikan akurasi kurang akurat dalam mendeteksi asap dan api, terutama pada deteksi asap, hal ini disebabkan oleh karakteristik objek asap yang transparan dan bergerak. Dalam penelitian ini, metode Convolutional Neural Network (CNN) diterapkan untuk deteksi asap dan api. Dari penelitian ini, diketahui bahwa CNN memberikan kinerja yang baik dalam deteksi kebakaran dan asap. Akurasi deteksi tertinggi diperoleh dengan menggunakan 144 data pelatihan, 20.000 iterasi dengan dropout. Kata kunci: Deteksi asap, deteksi kebakaran, Jaringan Syaraf Konvolusional ABSTRACT Fire and smoke detection is the first step as early detection of fires. Early detection of fire based on image processing is considered capable of providing effective results. The choice of detection method is an important key. Feature extraction methods based on statistical analysis and dynamic analysis sometimes provide less accurate accuracy in detecting smoke and fire, especially on smoke detection, this is due to the characteristics of transparent and moving smoke objects. In this study, the Convolutional Neural Network (CNN) method was applied for smoke and fire detection. From this study, it is known that CNN provides good performance in fire and smoke detection. The highest detection accuracy is obtained by using 144  training data, 20,000 iterations and dropout is true. Keyw ords: Smoke detection, Fire detection, Convolutional Neural Network","PeriodicalId":344430,"journal":{"name":"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Smoke and Fire Detection Base on Convolutional Neural Network\",\"authors\":\"E. S. Wahyuni, Muhammad Hendri\",\"doi\":\"10.26760/elkomika.v7i3.455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRAK Deteksi api dan asap adalah langkah pertama sebagai deteksi dini kebakaran. Deteksi dini kebakaran berdasarkan pemrosesan gambar dianggap mampu memberikan hasil yang efektif. Pilihan metode deteksi adalah kunci penting. Metode ekstraksi fitur berdasarkan analisis statistik dan analisis dinamis kadang-kadang memberikan akurasi kurang akurat dalam mendeteksi asap dan api, terutama pada deteksi asap, hal ini disebabkan oleh karakteristik objek asap yang transparan dan bergerak. Dalam penelitian ini, metode Convolutional Neural Network (CNN) diterapkan untuk deteksi asap dan api. Dari penelitian ini, diketahui bahwa CNN memberikan kinerja yang baik dalam deteksi kebakaran dan asap. Akurasi deteksi tertinggi diperoleh dengan menggunakan 144 data pelatihan, 20.000 iterasi dengan dropout. Kata kunci: Deteksi asap, deteksi kebakaran, Jaringan Syaraf Konvolusional ABSTRACT Fire and smoke detection is the first step as early detection of fires. Early detection of fire based on image processing is considered capable of providing effective results. The choice of detection method is an important key. Feature extraction methods based on statistical analysis and dynamic analysis sometimes provide less accurate accuracy in detecting smoke and fire, especially on smoke detection, this is due to the characteristics of transparent and moving smoke objects. In this study, the Convolutional Neural Network (CNN) method was applied for smoke and fire detection. From this study, it is known that CNN provides good performance in fire and smoke detection. The highest detection accuracy is obtained by using 144  training data, 20,000 iterations and dropout is true. Keyw ords: Smoke detection, Fire detection, Convolutional Neural Network\",\"PeriodicalId\":344430,\"journal\":{\"name\":\"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26760/elkomika.v7i3.455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/elkomika.v7i3.455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

火灾探测和烟雾探测是早期火灾探测的第一步。根据图像处理及早发现火灾被认为是有效的结果。选择检测方法是关键。基于统计分析和动态分析的特征提取方法有时会提供不太准确的准确性来检测烟雾和火灾,尤其是在烟雾探测方面,这是由透明的移动物体特征引起的。在这项研究中,神经通路网络(CNN)的应用是探测烟雾和火灾。从这项研究中,我们了解到CNN在火灾和烟雾探测方面做得很好。最高检测准确率是使用144项培训数据,2万次重复的dropout。关键字:烟探测、火探测、两股对等放射性火灾探测是火探测的第一步。基于图像的早期火灾探测被认为是一种附带影响的表现。选择方法是一个重要的关键。基于统计分析和动态分析的方法提取方法有时是对烟雾探测和火灾的准确反应,特别是对烟雾探测的准确反应,这是最典型的活动和移动物体的特征。在这项研究中,神经通路网络(CNN)的方法是使用烟雾探测。从这项研究中,我知道CNN在火灾和烟雾探测中表现良好。最重要的探测是使用144项数据培训,2万次重复和下降是真实的。重点线索:烟探测,火探测,神经通路网络
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smoke and Fire Detection Base on Convolutional Neural Network
ABSTRAK Deteksi api dan asap adalah langkah pertama sebagai deteksi dini kebakaran. Deteksi dini kebakaran berdasarkan pemrosesan gambar dianggap mampu memberikan hasil yang efektif. Pilihan metode deteksi adalah kunci penting. Metode ekstraksi fitur berdasarkan analisis statistik dan analisis dinamis kadang-kadang memberikan akurasi kurang akurat dalam mendeteksi asap dan api, terutama pada deteksi asap, hal ini disebabkan oleh karakteristik objek asap yang transparan dan bergerak. Dalam penelitian ini, metode Convolutional Neural Network (CNN) diterapkan untuk deteksi asap dan api. Dari penelitian ini, diketahui bahwa CNN memberikan kinerja yang baik dalam deteksi kebakaran dan asap. Akurasi deteksi tertinggi diperoleh dengan menggunakan 144 data pelatihan, 20.000 iterasi dengan dropout. Kata kunci: Deteksi asap, deteksi kebakaran, Jaringan Syaraf Konvolusional ABSTRACT Fire and smoke detection is the first step as early detection of fires. Early detection of fire based on image processing is considered capable of providing effective results. The choice of detection method is an important key. Feature extraction methods based on statistical analysis and dynamic analysis sometimes provide less accurate accuracy in detecting smoke and fire, especially on smoke detection, this is due to the characteristics of transparent and moving smoke objects. In this study, the Convolutional Neural Network (CNN) method was applied for smoke and fire detection. From this study, it is known that CNN provides good performance in fire and smoke detection. The highest detection accuracy is obtained by using 144  training data, 20,000 iterations and dropout is true. Keyw ords: Smoke detection, Fire detection, Convolutional Neural Network
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Immersion Duration Effect of Purple Leaf Extract (Graptophllum Pictum) on DSSC Model Kanal 5G dengan Pengaruh Kelembapan pada Frekuensi 3,3 GHz dan Bandwidth 99 MHz Berbasis Convolutional Codes Analisis Faktor Kapasitas Pembangkit Listrik Hibrida PLTB dengan PLTD di Pulau Terpencil: Studi Kasus Elat Pulau Serau Maluku Sistem Kendali Eddy Current Brakes Dinamometer menggunakan Linear Quadratic Regulator (LQR) Multiplikasi Input Analog pada PLC menggunakan Multiplekser IC74HC4067
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1