忽略场景背景的动作质量评估

Takasuke Nagai, Shoichiro Takeda, Masaaki Matsumura, S. Shimizu, Susumu Yamamoto
{"title":"忽略场景背景的动作质量评估","authors":"Takasuke Nagai, Shoichiro Takeda, Masaaki Matsumura, S. Shimizu, Susumu Yamamoto","doi":"10.1109/ICIP42928.2021.9506257","DOIUrl":null,"url":null,"abstract":"We propose an action quality assessment (AQA) method that can specifically assess target action quality with ignoring scene context, which is a feature unrelated to the target action. Existing AQA methods have tried to extract spatiotemporal features related to the target action by applying 3D convolution to the video. However, since their models are not explicitly designed to extract the features of the target action, they mis-extract scene context and thus cannot assess the target action quality correctly. To overcome this problem, we impose two losses to an existing AQA model: scene adversarial loss and our newly proposed human-masked regression loss. The scene adversarial loss encourages the model to ignore scene context by adversarial training. Our human-masked regression loss does so by making the correlation between score outputs by an AQA model and human referees undefinable when the target action is not visible. These two losses lead the model to specifically assess the target action quality with ignoring scene context. We evaluated our method on a diving dataset commonly used for AQA and found that it outperformed current state-of-the-art methods. This result shows that our method is effective in ignoring scene context while assessing the target action quality.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Action Quality Assessment With Ignoring Scene Context\",\"authors\":\"Takasuke Nagai, Shoichiro Takeda, Masaaki Matsumura, S. Shimizu, Susumu Yamamoto\",\"doi\":\"10.1109/ICIP42928.2021.9506257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an action quality assessment (AQA) method that can specifically assess target action quality with ignoring scene context, which is a feature unrelated to the target action. Existing AQA methods have tried to extract spatiotemporal features related to the target action by applying 3D convolution to the video. However, since their models are not explicitly designed to extract the features of the target action, they mis-extract scene context and thus cannot assess the target action quality correctly. To overcome this problem, we impose two losses to an existing AQA model: scene adversarial loss and our newly proposed human-masked regression loss. The scene adversarial loss encourages the model to ignore scene context by adversarial training. Our human-masked regression loss does so by making the correlation between score outputs by an AQA model and human referees undefinable when the target action is not visible. These two losses lead the model to specifically assess the target action quality with ignoring scene context. We evaluated our method on a diving dataset commonly used for AQA and found that it outperformed current state-of-the-art methods. This result shows that our method is effective in ignoring scene context while assessing the target action quality.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种动作质量评估(AQA)方法,该方法可以在忽略与目标动作无关的场景上下文的情况下,专门评估目标动作质量。现有的AQA方法试图通过对视频进行三维卷积来提取与目标动作相关的时空特征。然而,由于他们的模型没有明确设计来提取目标动作的特征,他们错误地提取场景上下文,因此无法正确评估目标动作的质量。为了克服这个问题,我们对现有的AQA模型施加了两种损失:场景对抗损失和我们新提出的人类掩蔽回归损失。场景对抗性损失鼓励模型通过对抗性训练忽略场景上下文。当目标动作不可见时,我们的人为屏蔽回归损失是通过使AQA模型和人类裁判的得分输出之间的相关性不可定义来实现的。这两种损失导致模型在忽略场景上下文的情况下专门评估目标动作质量。我们在AQA常用的潜水数据集上评估了我们的方法,发现它优于当前最先进的方法。结果表明,我们的方法在评估目标动作质量时可以有效地忽略场景上下文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Action Quality Assessment With Ignoring Scene Context
We propose an action quality assessment (AQA) method that can specifically assess target action quality with ignoring scene context, which is a feature unrelated to the target action. Existing AQA methods have tried to extract spatiotemporal features related to the target action by applying 3D convolution to the video. However, since their models are not explicitly designed to extract the features of the target action, they mis-extract scene context and thus cannot assess the target action quality correctly. To overcome this problem, we impose two losses to an existing AQA model: scene adversarial loss and our newly proposed human-masked regression loss. The scene adversarial loss encourages the model to ignore scene context by adversarial training. Our human-masked regression loss does so by making the correlation between score outputs by an AQA model and human referees undefinable when the target action is not visible. These two losses lead the model to specifically assess the target action quality with ignoring scene context. We evaluated our method on a diving dataset commonly used for AQA and found that it outperformed current state-of-the-art methods. This result shows that our method is effective in ignoring scene context while assessing the target action quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1