使用可解释的人工智能加速大脑研究

Jing-Lun Chou, Ya-Lin Huang, Chia-Ying Hsieh, Jian-Xue Huang, Chunshan Wei
{"title":"使用可解释的人工智能加速大脑研究","authors":"Jing-Lun Chou, Ya-Lin Huang, Chia-Ying Hsieh, Jian-Xue Huang, Chunshan Wei","doi":"10.1109/ICMEW56448.2022.9859322","DOIUrl":null,"url":null,"abstract":"In this demo, we present ExBrainable, an open-source application dedicated to modeling, evaluating and visualizing explainable CNN-based models on EEG data for brain/neuroscience research. We have implemented the functions including EEG data loading, model training, evaluation and parameter visualization. The application is also built with a model base including representative convolutional neural network architectures for users to implement without any programming. With its easy-to-use graphic user interface (GUI), it is completely available for investigators of different disciplines with limited resource and limited programming skill. Starting with preprocessed EEG data, users can quickly train the desired model, evaluate the performance, and finally visualize features learned by the model with no pain.","PeriodicalId":106759,"journal":{"name":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accelerating Brain Research using Explainable Artificial Intelligence\",\"authors\":\"Jing-Lun Chou, Ya-Lin Huang, Chia-Ying Hsieh, Jian-Xue Huang, Chunshan Wei\",\"doi\":\"10.1109/ICMEW56448.2022.9859322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this demo, we present ExBrainable, an open-source application dedicated to modeling, evaluating and visualizing explainable CNN-based models on EEG data for brain/neuroscience research. We have implemented the functions including EEG data loading, model training, evaluation and parameter visualization. The application is also built with a model base including representative convolutional neural network architectures for users to implement without any programming. With its easy-to-use graphic user interface (GUI), it is completely available for investigators of different disciplines with limited resource and limited programming skill. Starting with preprocessed EEG data, users can quickly train the desired model, evaluate the performance, and finally visualize features learned by the model with no pain.\",\"PeriodicalId\":106759,\"journal\":{\"name\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW56448.2022.9859322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW56448.2022.9859322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这个演示中,我们展示了ExBrainable,一个开源应用程序,致力于建模、评估和可视化基于脑电图数据的可解释cnn模型,用于脑/神经科学研究。实现了脑电数据加载、模型训练、评价和参数可视化等功能。该应用程序还建立了一个模型库,包括代表性的卷积神经网络架构,供用户在没有任何编程的情况下实现。它具有易于使用的图形用户界面(GUI),完全适用于资源有限和编程技能有限的不同学科的研究人员。从预处理的EEG数据开始,用户可以快速训练所需的模型,评估性能,最后将模型学习到的特征可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Brain Research using Explainable Artificial Intelligence
In this demo, we present ExBrainable, an open-source application dedicated to modeling, evaluating and visualizing explainable CNN-based models on EEG data for brain/neuroscience research. We have implemented the functions including EEG data loading, model training, evaluation and parameter visualization. The application is also built with a model base including representative convolutional neural network architectures for users to implement without any programming. With its easy-to-use graphic user interface (GUI), it is completely available for investigators of different disciplines with limited resource and limited programming skill. Starting with preprocessed EEG data, users can quickly train the desired model, evaluate the performance, and finally visualize features learned by the model with no pain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Quality Evaluation for Generated Music Based on Emotion Recognition Model Bottleneck Detection in Crowded Video Scenes Utilizing Lagrangian Motion Analysis Via Density and Arc Length Measures Efficient Topology Coding and Payload Partitioning Techniques for Neural Network Compression (NNC) Standard Exploring Multisensory Feedback for Virtual Reality Relaxation A Unified Video Summarization for Video Anomalies Through Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1