可验证的自我认证自治系统

Michael Fisher, Emily Collins, Louise Dennis, Matt Luckcuck, M. Webster, M. Jump, Vincent Pagé, C. Patchett, F. Dinmohammadi, D. Flynn, V. Robu, Xingyu Zhao
{"title":"可验证的自我认证自治系统","authors":"Michael Fisher, Emily Collins, Louise Dennis, Matt Luckcuck, M. Webster, M. Jump, Vincent Pagé, C. Patchett, F. Dinmohammadi, D. Flynn, V. Robu, Xingyu Zhao","doi":"10.1109/ISSREW.2018.00028","DOIUrl":null,"url":null,"abstract":"Autonomous systems are increasingly being used in safety-and mission-critical domains, including aviation, manufacturing, healthcare and the automotive industry. Systems for such domains are often verified with respect to essential requirements set by a regulator, as part of a process called certification. In principle, autonomous systems can be deployed if they can be certified for use. However, certification is especially challenging as the condition of both the system and its environment will surely change, limiting the effective use of the system. In this paper we discuss the technological and regulatory background for such systems, and introduce an architectural framework that supports verifiably-correct dynamic self-certification by the system, potentially allowing deployed systems to operate more safely and effectively.","PeriodicalId":321448,"journal":{"name":"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Verifiable Self-Certifying Autonomous Systems\",\"authors\":\"Michael Fisher, Emily Collins, Louise Dennis, Matt Luckcuck, M. Webster, M. Jump, Vincent Pagé, C. Patchett, F. Dinmohammadi, D. Flynn, V. Robu, Xingyu Zhao\",\"doi\":\"10.1109/ISSREW.2018.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous systems are increasingly being used in safety-and mission-critical domains, including aviation, manufacturing, healthcare and the automotive industry. Systems for such domains are often verified with respect to essential requirements set by a regulator, as part of a process called certification. In principle, autonomous systems can be deployed if they can be certified for use. However, certification is especially challenging as the condition of both the system and its environment will surely change, limiting the effective use of the system. In this paper we discuss the technological and regulatory background for such systems, and introduce an architectural framework that supports verifiably-correct dynamic self-certification by the system, potentially allowing deployed systems to operate more safely and effectively.\",\"PeriodicalId\":321448,\"journal\":{\"name\":\"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW.2018.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW.2018.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

自主系统越来越多地应用于安全和关键任务领域,包括航空、制造业、医疗保健和汽车行业。这些领域的系统通常根据监管机构设定的基本要求进行验证,这是称为认证的过程的一部分。原则上,如果能够获得使用认证,就可以部署自主系统。然而,认证尤其具有挑战性,因为系统及其环境的条件肯定会发生变化,从而限制了系统的有效使用。在本文中,我们讨论了此类系统的技术和监管背景,并介绍了一个体系结构框架,该框架支持系统的可验证正确的动态自我认证,从而潜在地允许部署的系统更安全有效地运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Verifiable Self-Certifying Autonomous Systems
Autonomous systems are increasingly being used in safety-and mission-critical domains, including aviation, manufacturing, healthcare and the automotive industry. Systems for such domains are often verified with respect to essential requirements set by a regulator, as part of a process called certification. In principle, autonomous systems can be deployed if they can be certified for use. However, certification is especially challenging as the condition of both the system and its environment will surely change, limiting the effective use of the system. In this paper we discuss the technological and regulatory background for such systems, and introduce an architectural framework that supports verifiably-correct dynamic self-certification by the system, potentially allowing deployed systems to operate more safely and effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the WoSoCer 2018 Workshop Chairs Software Aging and Rejuvenation in the Cloud: A Literature Review Spectrum-Based Fault Localization for Logic-Based Reasoning [Title page iii] Software Reliability Assessment: Modeling and Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1