用稳定匹配优化推荐的准确性和多样性

Farzad Eskandanian, B. Mobasher
{"title":"用稳定匹配优化推荐的准确性和多样性","authors":"Farzad Eskandanian, B. Mobasher","doi":"10.1145/3340631.3394858","DOIUrl":null,"url":null,"abstract":"Increasing aggregate diversity (or catalog coverage) is an important system-level objective in many recommendation domains where it may be desirable to mitigate the popularity bias and to improve the coverage of long-tail items in recommendations given to users. This is especially important in multistakeholder recommendation scenarios where it may be important to optimize utilities not just for the end user, but also for other stakeholders such as item sellers or producers who desire a fair representation of their items across recommendation lists produced by the system. Unfortunately, attempts to increase aggregate diversity often result in lower recommendation accuracy for end users. Thus, addressing this problem requires an approach that can effectively manage the trade-offs between accuracy and aggregate diversity. In this work, we propose a two-sided post-processing approach in which both user and item utilities are considered. Our goal is to maximize aggregate diversity while minimizing loss in recommendation accuracy. Our solution is a generalization of the Deferred Acceptance algorithm which was proposed as an efficient algorithm to solve the well-known stable matching problem. We prove that our algorithm results in a unique user-optimal stable match between items and users. Using three recommendation datasets, we empirically demonstrate the effectiveness of our approach in comparison to several baselines. In particular, our results show that the proposed solution is quite effective in increasing aggregate diversity and item-side utility while optimizing recommendation accuracy for end users.","PeriodicalId":417607,"journal":{"name":"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Using Stable Matching to Optimize the Balance between Accuracy and Diversity in Recommendation\",\"authors\":\"Farzad Eskandanian, B. Mobasher\",\"doi\":\"10.1145/3340631.3394858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing aggregate diversity (or catalog coverage) is an important system-level objective in many recommendation domains where it may be desirable to mitigate the popularity bias and to improve the coverage of long-tail items in recommendations given to users. This is especially important in multistakeholder recommendation scenarios where it may be important to optimize utilities not just for the end user, but also for other stakeholders such as item sellers or producers who desire a fair representation of their items across recommendation lists produced by the system. Unfortunately, attempts to increase aggregate diversity often result in lower recommendation accuracy for end users. Thus, addressing this problem requires an approach that can effectively manage the trade-offs between accuracy and aggregate diversity. In this work, we propose a two-sided post-processing approach in which both user and item utilities are considered. Our goal is to maximize aggregate diversity while minimizing loss in recommendation accuracy. Our solution is a generalization of the Deferred Acceptance algorithm which was proposed as an efficient algorithm to solve the well-known stable matching problem. We prove that our algorithm results in a unique user-optimal stable match between items and users. Using three recommendation datasets, we empirically demonstrate the effectiveness of our approach in comparison to several baselines. In particular, our results show that the proposed solution is quite effective in increasing aggregate diversity and item-side utility while optimizing recommendation accuracy for end users.\",\"PeriodicalId\":417607,\"journal\":{\"name\":\"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3340631.3394858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340631.3394858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在许多推荐领域中,增加总体多样性(或目录覆盖率)是一个重要的系统级目标,在这些领域中,可能需要减轻流行度偏差,并提高向用户推荐的长尾条目的覆盖率。这在多利益相关者推荐场景中尤其重要,因为优化实用程序不仅对最终用户很重要,而且对其他利益相关者也很重要,比如物品销售商或生产者,他们希望在系统生成的推荐列表中公平地表示他们的物品。不幸的是,增加聚合多样性的尝试通常会降低最终用户的推荐准确性。因此,解决这个问题需要一种能够有效地管理准确性和总体多样性之间的权衡的方法。在这项工作中,我们提出了一种双面后处理方法,其中考虑了用户和项目实用程序。我们的目标是在最小化推荐准确性损失的同时最大化总体多样性。我们的解决方案是延迟接受算法的推广,延迟接受算法是解决众所周知的稳定匹配问题的有效算法。我们证明了我们的算法在项目和用户之间产生唯一的用户最优稳定匹配。使用三个推荐数据集,我们通过与几个基线的比较,实证地证明了我们方法的有效性。特别是,我们的结果表明,所提出的解决方案在为最终用户优化推荐准确性的同时,在增加总体多样性和项目侧效用方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Stable Matching to Optimize the Balance between Accuracy and Diversity in Recommendation
Increasing aggregate diversity (or catalog coverage) is an important system-level objective in many recommendation domains where it may be desirable to mitigate the popularity bias and to improve the coverage of long-tail items in recommendations given to users. This is especially important in multistakeholder recommendation scenarios where it may be important to optimize utilities not just for the end user, but also for other stakeholders such as item sellers or producers who desire a fair representation of their items across recommendation lists produced by the system. Unfortunately, attempts to increase aggregate diversity often result in lower recommendation accuracy for end users. Thus, addressing this problem requires an approach that can effectively manage the trade-offs between accuracy and aggregate diversity. In this work, we propose a two-sided post-processing approach in which both user and item utilities are considered. Our goal is to maximize aggregate diversity while minimizing loss in recommendation accuracy. Our solution is a generalization of the Deferred Acceptance algorithm which was proposed as an efficient algorithm to solve the well-known stable matching problem. We prove that our algorithm results in a unique user-optimal stable match between items and users. Using three recommendation datasets, we empirically demonstrate the effectiveness of our approach in comparison to several baselines. In particular, our results show that the proposed solution is quite effective in increasing aggregate diversity and item-side utility while optimizing recommendation accuracy for end users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Pen Features Predict Task Difficulty and User Performance of Cognitive Tests Workshop on Explainable User Models and Personalized Systems (ExUM 2020) The Eyes Are the Windows to the Mind: Implications for AI-Driven Personalized Interaction Inside Out: Exploring the Emotional Side of Search Engines in the Classroom Modeling Tourists' Personality in Recommender Systems: How Does Personality Influence Preferences for Tourist Attractions?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1