{"title":"基于机器学习方法的Mancos页岩力学特性估计","authors":"H. Yoon, T. Kadeethum","doi":"10.56952/arma-2022-0487","DOIUrl":null,"url":null,"abstract":"We propose the use of balanced iterative reducing and clustering using hierarchies (BIRCH) combined with linear regression to predict the reduced Young's modulus and hardness of highly heterogeneous materials from a set of nanoindentation experiments. We first use BIRCH to cluster the dataset according to its mineral compositions, which are derived from the spectral matching of energy-dispersive spectroscopy data through the modular automated processing system (MAPS) platform. We observe that grouping our dataset into five clusters yields the best accuracy as well as a reasonable representation of mineralogy in each cluster. Subsequently, we test four types of regression models, namely linear regression, support vector regression, Gaussian process regression, and extreme gradient boosting regression. The linear regression and Gaussian process regression provide the most accurate prediction, and the proposed framework yields R^2 = 0.93 for the test set. Although the study is needed more comprehensively, our results shows that machine learning methods such as linear regression or Gaussian process regression can be used to accurately estimate mechanical properties with a proper number of grouping based on compositional data.","PeriodicalId":418045,"journal":{"name":"Proceedings 56th US Rock Mechanics / Geomechanics Symposium","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of Mechanical Properties of Mancos Shale using Machine Learning Methods\",\"authors\":\"H. Yoon, T. Kadeethum\",\"doi\":\"10.56952/arma-2022-0487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the use of balanced iterative reducing and clustering using hierarchies (BIRCH) combined with linear regression to predict the reduced Young's modulus and hardness of highly heterogeneous materials from a set of nanoindentation experiments. We first use BIRCH to cluster the dataset according to its mineral compositions, which are derived from the spectral matching of energy-dispersive spectroscopy data through the modular automated processing system (MAPS) platform. We observe that grouping our dataset into five clusters yields the best accuracy as well as a reasonable representation of mineralogy in each cluster. Subsequently, we test four types of regression models, namely linear regression, support vector regression, Gaussian process regression, and extreme gradient boosting regression. The linear regression and Gaussian process regression provide the most accurate prediction, and the proposed framework yields R^2 = 0.93 for the test set. Although the study is needed more comprehensively, our results shows that machine learning methods such as linear regression or Gaussian process regression can be used to accurately estimate mechanical properties with a proper number of grouping based on compositional data.\",\"PeriodicalId\":418045,\"journal\":{\"name\":\"Proceedings 56th US Rock Mechanics / Geomechanics Symposium\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 56th US Rock Mechanics / Geomechanics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56952/arma-2022-0487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 56th US Rock Mechanics / Geomechanics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56952/arma-2022-0487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimation of Mechanical Properties of Mancos Shale using Machine Learning Methods
We propose the use of balanced iterative reducing and clustering using hierarchies (BIRCH) combined with linear regression to predict the reduced Young's modulus and hardness of highly heterogeneous materials from a set of nanoindentation experiments. We first use BIRCH to cluster the dataset according to its mineral compositions, which are derived from the spectral matching of energy-dispersive spectroscopy data through the modular automated processing system (MAPS) platform. We observe that grouping our dataset into five clusters yields the best accuracy as well as a reasonable representation of mineralogy in each cluster. Subsequently, we test four types of regression models, namely linear regression, support vector regression, Gaussian process regression, and extreme gradient boosting regression. The linear regression and Gaussian process regression provide the most accurate prediction, and the proposed framework yields R^2 = 0.93 for the test set. Although the study is needed more comprehensively, our results shows that machine learning methods such as linear regression or Gaussian process regression can be used to accurately estimate mechanical properties with a proper number of grouping based on compositional data.