基于小波分析和深度学习方法的脉冲信号检测

Daniel Green, M. Tummala, J. McEachen
{"title":"基于小波分析和深度学习方法的脉冲信号检测","authors":"Daniel Green, M. Tummala, J. McEachen","doi":"10.1109/MILCOM52596.2021.9652942","DOIUrl":null,"url":null,"abstract":"This paper explores the use of wavelet analysis and deep learning techniques to classify pulsed binary data over a severely noisy communications channel. Military communications need to operate in extremely harsh radio environments, which may include hostile intent to disrupt communications. Consequently, unconventional methods, such as pulsed communications, need to be investigated. Pulsed transmission techniques utilized for such channels typically result in pulses that are not easily discerned from noise and other interference. Deep learning techniques have proven advantageous in quickly and efficiently identifying minute variations in large data sets. This paper presents methods for leveraging deep learning techniques for pulsed signal detection.","PeriodicalId":187645,"journal":{"name":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulsed Signal Detection Utilizing Wavelet Analysis with a Deep Learning Approach\",\"authors\":\"Daniel Green, M. Tummala, J. McEachen\",\"doi\":\"10.1109/MILCOM52596.2021.9652942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the use of wavelet analysis and deep learning techniques to classify pulsed binary data over a severely noisy communications channel. Military communications need to operate in extremely harsh radio environments, which may include hostile intent to disrupt communications. Consequently, unconventional methods, such as pulsed communications, need to be investigated. Pulsed transmission techniques utilized for such channels typically result in pulses that are not easily discerned from noise and other interference. Deep learning techniques have proven advantageous in quickly and efficiently identifying minute variations in large data sets. This paper presents methods for leveraging deep learning techniques for pulsed signal detection.\",\"PeriodicalId\":187645,\"journal\":{\"name\":\"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM52596.2021.9652942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM52596.2021.9652942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了使用小波分析和深度学习技术对严重噪声通信信道上的脉冲二进制数据进行分类。军事通信需要在极端恶劣的无线电环境中运行,其中可能包括破坏通信的敌对意图。因此,非常规的方法,如脉冲通信,需要研究。用于这种信道的脉冲传输技术通常产生的脉冲不容易从噪声和其他干扰中辨别出来。深度学习技术已被证明在快速有效地识别大型数据集中的微小变化方面具有优势。本文介绍了利用深度学习技术进行脉冲信号检测的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pulsed Signal Detection Utilizing Wavelet Analysis with a Deep Learning Approach
This paper explores the use of wavelet analysis and deep learning techniques to classify pulsed binary data over a severely noisy communications channel. Military communications need to operate in extremely harsh radio environments, which may include hostile intent to disrupt communications. Consequently, unconventional methods, such as pulsed communications, need to be investigated. Pulsed transmission techniques utilized for such channels typically result in pulses that are not easily discerned from noise and other interference. Deep learning techniques have proven advantageous in quickly and efficiently identifying minute variations in large data sets. This paper presents methods for leveraging deep learning techniques for pulsed signal detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RF-based Network Inference: Theoretical Foundations Security Threats Analysis of the Unmanned Aerial Vehicle System Using Distributed Ledgers For Command and Control – Concepts and Challenges DerechoDDS: Strongly Consistent Data Distribution for Mission-Critical Applications CUE: A Standalone Testbed for 5G Experimentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1