基于定向运动行为图的交通异常检测

Nan Dong, Zhen Jia, Jie Shao, Ziyou Xiong, Zhi-peng Li, Fuqiang Liu, Jianwei Zhao, Pei-Yuan Peng
{"title":"基于定向运动行为图的交通异常检测","authors":"Nan Dong, Zhen Jia, Jie Shao, Ziyou Xiong, Zhi-peng Li, Fuqiang Liu, Jianwei Zhao, Pei-Yuan Peng","doi":"10.1109/AVSS.2010.61","DOIUrl":null,"url":null,"abstract":"Automatic traffic abnormality detection through visualsurveillance is one of the critical requirements for IntelligentTransportation Systems (ITS). In this paper, wepresent a novel algorithm to detect abnormal traffic eventsin crowded scenes. Our algorithm can be deployed with fewsetup steps to automatically monitor traffic status. Differentfrom other approaches, we don’t need to define region ofinterests (ROI) or tripwires nor to configure object detectionand tracking parameters. A novel object behavior descriptor- directional motion behavior descriptors are proposed.The directional motion behavior descriptors collectforeground objects’ direction and speed information from avideo sequence with normal traffic events, and then thesedescriptors are accumulated to generate a directional motionbehavior map which models the normal traffic status.During detection steps, we first extract the directional motionbehavior map from the newly observed video and thenmeasure the differences between the normal behavior mapand the new map. If new direction motion behaviors arevery different from the descriptors in the normal behaviormap, then the corresponding regions in the observed videocontain traffic abnormalities. Our proposed algorithm hasbeen tested using both synthesized and real surveillancevideos. Experimental results demonstrated that our algorithmis effective and efficient for practical real-time trafficsurveillance applications.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"61 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Traffic Abnormality Detection through Directional Motion Behavior Map\",\"authors\":\"Nan Dong, Zhen Jia, Jie Shao, Ziyou Xiong, Zhi-peng Li, Fuqiang Liu, Jianwei Zhao, Pei-Yuan Peng\",\"doi\":\"10.1109/AVSS.2010.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic traffic abnormality detection through visualsurveillance is one of the critical requirements for IntelligentTransportation Systems (ITS). In this paper, wepresent a novel algorithm to detect abnormal traffic eventsin crowded scenes. Our algorithm can be deployed with fewsetup steps to automatically monitor traffic status. Differentfrom other approaches, we don’t need to define region ofinterests (ROI) or tripwires nor to configure object detectionand tracking parameters. A novel object behavior descriptor- directional motion behavior descriptors are proposed.The directional motion behavior descriptors collectforeground objects’ direction and speed information from avideo sequence with normal traffic events, and then thesedescriptors are accumulated to generate a directional motionbehavior map which models the normal traffic status.During detection steps, we first extract the directional motionbehavior map from the newly observed video and thenmeasure the differences between the normal behavior mapand the new map. If new direction motion behaviors arevery different from the descriptors in the normal behaviormap, then the corresponding regions in the observed videocontain traffic abnormalities. Our proposed algorithm hasbeen tested using both synthesized and real surveillancevideos. Experimental results demonstrated that our algorithmis effective and efficient for practical real-time trafficsurveillance applications.\",\"PeriodicalId\":415758,\"journal\":{\"name\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"volume\":\"61 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2010.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

通过视觉监控自动检测交通异常是智能交通系统(ITS)的关键要求之一。本文提出了一种检测拥挤场景中异常交通事件的新算法。我们的算法可以用很少的设置步骤来部署,以自动监控交通状态。与其他方法不同,我们不需要定义兴趣区域(ROI)或绊线,也不需要配置目标检测和跟踪参数。提出了一种新的物体行为描述符——定向运动行为描述符。定向运动行为描述符从具有正常交通事件的视频序列中收集前景物体的方向和速度信息,然后将这些描述符累积生成一个模拟正常交通状态的定向运动行为图。在检测步骤中,我们首先从新观察到的视频中提取方向运动行为图,然后测量正常行为图和新行为图之间的差异。如果新的方向运动行为与正常行为图中的描述符非常不同,则观察到的视频中相应的区域包含交通异常。我们提出的算法已经在合成视频和真实监控视频中进行了测试。实验结果表明,该算法在实际的实时交通监控应用中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Traffic Abnormality Detection through Directional Motion Behavior Map
Automatic traffic abnormality detection through visualsurveillance is one of the critical requirements for IntelligentTransportation Systems (ITS). In this paper, wepresent a novel algorithm to detect abnormal traffic eventsin crowded scenes. Our algorithm can be deployed with fewsetup steps to automatically monitor traffic status. Differentfrom other approaches, we don’t need to define region ofinterests (ROI) or tripwires nor to configure object detectionand tracking parameters. A novel object behavior descriptor- directional motion behavior descriptors are proposed.The directional motion behavior descriptors collectforeground objects’ direction and speed information from avideo sequence with normal traffic events, and then thesedescriptors are accumulated to generate a directional motionbehavior map which models the normal traffic status.During detection steps, we first extract the directional motionbehavior map from the newly observed video and thenmeasure the differences between the normal behavior mapand the new map. If new direction motion behaviors arevery different from the descriptors in the normal behaviormap, then the corresponding regions in the observed videocontain traffic abnormalities. Our proposed algorithm hasbeen tested using both synthesized and real surveillancevideos. Experimental results demonstrated that our algorithmis effective and efficient for practical real-time trafficsurveillance applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1