增强隐私保护的去中心化联邦学习

Sheng-Po Tseng, Jan-Yue Lin, Wei-Chien Cheng, L. Yeh, Chih-Ya Shen
{"title":"增强隐私保护的去中心化联邦学习","authors":"Sheng-Po Tseng, Jan-Yue Lin, Wei-Chien Cheng, L. Yeh, Chih-Ya Shen","doi":"10.1109/ICMEW56448.2022.9859507","DOIUrl":null,"url":null,"abstract":"We present a decentralized federated learning (FL) framework based on blockchain. In traditional federated learning, it is necessary that a third-party centralized server aggregates all the gradients which participant in the upload, but such a trusted third-party may not always exist. We address this issue with the decentralized blockchain and encrypt the neural network model parameters and gradients.","PeriodicalId":106759,"journal":{"name":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Decentralized Federated Learning with Enhanced Privacy Preservation\",\"authors\":\"Sheng-Po Tseng, Jan-Yue Lin, Wei-Chien Cheng, L. Yeh, Chih-Ya Shen\",\"doi\":\"10.1109/ICMEW56448.2022.9859507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a decentralized federated learning (FL) framework based on blockchain. In traditional federated learning, it is necessary that a third-party centralized server aggregates all the gradients which participant in the upload, but such a trusted third-party may not always exist. We address this issue with the decentralized blockchain and encrypt the neural network model parameters and gradients.\",\"PeriodicalId\":106759,\"journal\":{\"name\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW56448.2022.9859507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW56448.2022.9859507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个基于区块链的去中心化联邦学习(FL)框架。在传统的联邦学习中,需要第三方集中式服务器聚合参与上传的所有梯度,但这样的可信第三方可能并不总是存在。我们用去中心化的区块链解决了这个问题,并加密了神经网络模型参数和梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decentralized Federated Learning with Enhanced Privacy Preservation
We present a decentralized federated learning (FL) framework based on blockchain. In traditional federated learning, it is necessary that a third-party centralized server aggregates all the gradients which participant in the upload, but such a trusted third-party may not always exist. We address this issue with the decentralized blockchain and encrypt the neural network model parameters and gradients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Quality Evaluation for Generated Music Based on Emotion Recognition Model Bottleneck Detection in Crowded Video Scenes Utilizing Lagrangian Motion Analysis Via Density and Arc Length Measures Efficient Topology Coding and Payload Partitioning Techniques for Neural Network Compression (NNC) Standard Exploring Multisensory Feedback for Virtual Reality Relaxation A Unified Video Summarization for Video Anomalies Through Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1