PR12:肿瘤新抗原的功能鉴定与治疗靶向

S. Schoenberger, Aaron M. Miller, Luise Sternberg, Leslie Montero Cuencac, Milad Bahmanof, Zeynep Koasaloglu-Yalcin, Manasa Lanka, A. Premlal, P. Vijayanand, J. Greenbaum, Allesandro Seatte, Ezra E. W. Cohen, Bjoern Peters
{"title":"PR12:肿瘤新抗原的功能鉴定与治疗靶向","authors":"S. Schoenberger, Aaron M. Miller, Luise Sternberg, Leslie Montero Cuencac, Milad Bahmanof, Zeynep Koasaloglu-Yalcin, Manasa Lanka, A. Premlal, P. Vijayanand, J. Greenbaum, Allesandro Seatte, Ezra E. W. Cohen, Bjoern Peters","doi":"10.1158/2326-6074.CRICIMTEATIAACR18-PR12","DOIUrl":null,"url":null,"abstract":"Accurate identification of tumor-specific neoantigens (NeoAg) is essential for the development of effective personalized cancer vaccines and cellular immunotherapies. The success rates for purely computational approaches which rely on predicted HLA-binding have been disappointing, as these generally ignore 85-90% of total mutations and find less than 5% of those selected can be confirmed as T-cell targets. We have developed a novel NeoAg identification platform in which WES and RNAseq metadata is used to nominate mutations for subsequent functional T-cell analysis using autologous PBMC and/or TIL. Applying this platform to tumors of low mutational burden including PDAC, HNSCC, and MSS-CRC, we report that an average of 35% of expressed mutations selected for functional testing can be verified as neoantigens, and that a significant number of these would be missed by HLA-binding algorithms. Responses comprise both type I and type 2 CD4+ and CD8+ effector T-cells recognizing both “passenger” mutations and known activating mutations in driver oncogenes such as KRAS, PIK3CA, and NRAS. Additionally, we have established a single-cell platform for isolation of T-cell receptors (TCR) against these shared recurrent mutations, and have opened a phase 1b clinical trial to evaluate the efficacy of personalized NeoAg vaccination in solid tumors. Citation Format: Stephen Phillip Schoenberger, Aaron M. Miller, Luise A. Sternberg, Leslie Montero Cuencac, Milad Bahmanof, Zeynep Koasaloglu-Yalcin, Manasa Lanka, Ashmitaa Premlal, Pandurangan Vijayanand, Jason Greenbaum, Allesandro Seatte, Ezra E.W. Cohen, Bjoern Peters. Functional identification and therapeutic targeting of tumor neoantigens [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr PR12.","PeriodicalId":433681,"journal":{"name":"Mutational Analysis and Predicting Response to Immunotherapy","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract PR12: Functional identification and therapeutic targeting of tumor neoantigens\",\"authors\":\"S. Schoenberger, Aaron M. Miller, Luise Sternberg, Leslie Montero Cuencac, Milad Bahmanof, Zeynep Koasaloglu-Yalcin, Manasa Lanka, A. Premlal, P. Vijayanand, J. Greenbaum, Allesandro Seatte, Ezra E. W. Cohen, Bjoern Peters\",\"doi\":\"10.1158/2326-6074.CRICIMTEATIAACR18-PR12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate identification of tumor-specific neoantigens (NeoAg) is essential for the development of effective personalized cancer vaccines and cellular immunotherapies. The success rates for purely computational approaches which rely on predicted HLA-binding have been disappointing, as these generally ignore 85-90% of total mutations and find less than 5% of those selected can be confirmed as T-cell targets. We have developed a novel NeoAg identification platform in which WES and RNAseq metadata is used to nominate mutations for subsequent functional T-cell analysis using autologous PBMC and/or TIL. Applying this platform to tumors of low mutational burden including PDAC, HNSCC, and MSS-CRC, we report that an average of 35% of expressed mutations selected for functional testing can be verified as neoantigens, and that a significant number of these would be missed by HLA-binding algorithms. Responses comprise both type I and type 2 CD4+ and CD8+ effector T-cells recognizing both “passenger” mutations and known activating mutations in driver oncogenes such as KRAS, PIK3CA, and NRAS. Additionally, we have established a single-cell platform for isolation of T-cell receptors (TCR) against these shared recurrent mutations, and have opened a phase 1b clinical trial to evaluate the efficacy of personalized NeoAg vaccination in solid tumors. Citation Format: Stephen Phillip Schoenberger, Aaron M. Miller, Luise A. Sternberg, Leslie Montero Cuencac, Milad Bahmanof, Zeynep Koasaloglu-Yalcin, Manasa Lanka, Ashmitaa Premlal, Pandurangan Vijayanand, Jason Greenbaum, Allesandro Seatte, Ezra E.W. Cohen, Bjoern Peters. Functional identification and therapeutic targeting of tumor neoantigens [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr PR12.\",\"PeriodicalId\":433681,\"journal\":{\"name\":\"Mutational Analysis and Predicting Response to Immunotherapy\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutational Analysis and Predicting Response to Immunotherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6074.CRICIMTEATIAACR18-PR12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutational Analysis and Predicting Response to Immunotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2326-6074.CRICIMTEATIAACR18-PR12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确识别肿瘤特异性新抗原(NeoAg)对于开发有效的个性化癌症疫苗和细胞免疫疗法至关重要。依靠预测hla结合的纯计算方法的成功率令人失望,因为这些方法通常忽略了总突变的85-90%,并且发现只有不到5%的被选中的突变可以被确认为t细胞靶标。我们开发了一种新的NeoAg鉴定平台,其中使用WES和RNAseq元数据来指定突变,以便随后使用自体PBMC和/或TIL进行功能性t细胞分析。将该平台应用于低突变负担的肿瘤,包括PDAC、HNSCC和MSS-CRC,我们报告了平均35%的用于功能测试的表达突变可以被验证为新抗原,并且hla结合算法会错过其中的很大一部分。应答包括I型和2型CD4+和CD8+效应t细胞,识别驱动癌基因(如KRAS、PIK3CA和NRAS)中的“乘客”突变和已知的激活突变。此外,我们已经建立了一个针对这些共同复发突变的t细胞受体(TCR)分离的单细胞平台,并已经开启了一项1b期临床试验,以评估个性化NeoAg疫苗接种在实体瘤中的疗效。引文格式:Stephen Phillip Schoenberger, Aaron M. Miller, louise A. Sternberg, Leslie Montero Cuencac, Milad Bahmanof, Zeynep Koasaloglu-Yalcin, Manasa Lanka, Ashmitaa Premlal, Pandurangan Vijayanand, Jason Greenbaum, Allesandro Seatte, Ezra E.W. Cohen, Bjoern Peters。肿瘤新抗原的功能鉴定及治疗靶向[摘要]。第四届CRI-CIMT-EATI-AACR国际癌症免疫治疗会议:将科学转化为生存;2018年9月30日至10月3日;纽约,纽约。费城(PA): AACR;癌症免疫学杂志2019;7(2增刊):摘要nr PR12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abstract PR12: Functional identification and therapeutic targeting of tumor neoantigens
Accurate identification of tumor-specific neoantigens (NeoAg) is essential for the development of effective personalized cancer vaccines and cellular immunotherapies. The success rates for purely computational approaches which rely on predicted HLA-binding have been disappointing, as these generally ignore 85-90% of total mutations and find less than 5% of those selected can be confirmed as T-cell targets. We have developed a novel NeoAg identification platform in which WES and RNAseq metadata is used to nominate mutations for subsequent functional T-cell analysis using autologous PBMC and/or TIL. Applying this platform to tumors of low mutational burden including PDAC, HNSCC, and MSS-CRC, we report that an average of 35% of expressed mutations selected for functional testing can be verified as neoantigens, and that a significant number of these would be missed by HLA-binding algorithms. Responses comprise both type I and type 2 CD4+ and CD8+ effector T-cells recognizing both “passenger” mutations and known activating mutations in driver oncogenes such as KRAS, PIK3CA, and NRAS. Additionally, we have established a single-cell platform for isolation of T-cell receptors (TCR) against these shared recurrent mutations, and have opened a phase 1b clinical trial to evaluate the efficacy of personalized NeoAg vaccination in solid tumors. Citation Format: Stephen Phillip Schoenberger, Aaron M. Miller, Luise A. Sternberg, Leslie Montero Cuencac, Milad Bahmanof, Zeynep Koasaloglu-Yalcin, Manasa Lanka, Ashmitaa Premlal, Pandurangan Vijayanand, Jason Greenbaum, Allesandro Seatte, Ezra E.W. Cohen, Bjoern Peters. Functional identification and therapeutic targeting of tumor neoantigens [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr PR12.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstract B092: Tumor infiltrating T-cells from renal cell carcinoma patients recognize neoantigens derived from point and frameshift mutations Abstract B084: Methylation landscape of tumors associated with antitumor immune signature Abstract B074: A recall antigen-based potency assay for immunomodulatory biologics that could discriminate responders from nonresponders Abstract B089: Application of precision cancer immunotherapy design tools to bladder cancer: Non-self-like neoepitopes as a prognostic biomarker Abstract B083: Defective transcription elongation in a subset of cancers confers immunotherapy resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1