TrustSleepNet:一个可信赖的深度多模态睡眠阶段分类网络

Guanjie Huang, Fenglong Ma
{"title":"TrustSleepNet:一个可信赖的深度多模态睡眠阶段分类网络","authors":"Guanjie Huang, Fenglong Ma","doi":"10.1109/BHI56158.2022.9926875","DOIUrl":null,"url":null,"abstract":"Correctly classifying different sleep stages is a critical and prerequisite step in diagnosing sleep-related issues. In practice, the clinical experts must manually review the polysomnography (PSG) recordings to classify sleep stages. Such a procedure is time-consuming, laborious, and potentially prone to human subjective errors. Deep learning-based methods have been successfully adopted for automatically classifying sleep stages in recent years. However, they cannot simply say “I do not know” when they are uncertain in their predictions, which may easily create significant risk in clinical applications, despite their good performance. To address this issue, we propose a deep model, named TrustSleepNet, which contains evidential learning and cross-modality attention modules. Evidential learning predicts the probability density of the classes, which can learn an uncertainty score and make the prediction trustable in real-world clinical applications. Cross-modality attention adaptively fuses multimodal PSG data by enhancing the significant ones and suppressing irrelevant ones. Experimental results demonstrate that TrustSleepNet outperforms state-of-the-art benchmark methods, and the uncertainty score makes the prediction more trustable and reliable.","PeriodicalId":347210,"journal":{"name":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TrustSleepNet: A Trustable Deep Multimodal Network for Sleep Stage Classification\",\"authors\":\"Guanjie Huang, Fenglong Ma\",\"doi\":\"10.1109/BHI56158.2022.9926875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correctly classifying different sleep stages is a critical and prerequisite step in diagnosing sleep-related issues. In practice, the clinical experts must manually review the polysomnography (PSG) recordings to classify sleep stages. Such a procedure is time-consuming, laborious, and potentially prone to human subjective errors. Deep learning-based methods have been successfully adopted for automatically classifying sleep stages in recent years. However, they cannot simply say “I do not know” when they are uncertain in their predictions, which may easily create significant risk in clinical applications, despite their good performance. To address this issue, we propose a deep model, named TrustSleepNet, which contains evidential learning and cross-modality attention modules. Evidential learning predicts the probability density of the classes, which can learn an uncertainty score and make the prediction trustable in real-world clinical applications. Cross-modality attention adaptively fuses multimodal PSG data by enhancing the significant ones and suppressing irrelevant ones. Experimental results demonstrate that TrustSleepNet outperforms state-of-the-art benchmark methods, and the uncertainty score makes the prediction more trustable and reliable.\",\"PeriodicalId\":347210,\"journal\":{\"name\":\"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BHI56158.2022.9926875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI56158.2022.9926875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正确划分不同的睡眠阶段是诊断睡眠相关问题的关键和先决条件。在实践中,临床专家必须手动查看多导睡眠图(PSG)记录来对睡眠阶段进行分类。这样的程序耗时、费力,而且可能容易出现人为的主观错误。近年来,基于深度学习的方法已被成功地用于睡眠阶段的自动分类。然而,当他们的预测不确定时,他们不能简单地说“我不知道”,这可能很容易在临床应用中产生重大风险,尽管他们的表现很好。为了解决这个问题,我们提出了一个深度模型,名为TrustSleepNet,它包含证据学习和跨模态关注模块。证据学习预测类的概率密度,可以学习不确定性分数,使预测在实际临床应用中具有可信度。跨模态注意通过增强显著信息和抑制不相关信息来自适应融合多模态PSG数据。实验结果表明,TrustSleepNet优于最先进的基准方法,不确定性评分使预测更加可信和可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TrustSleepNet: A Trustable Deep Multimodal Network for Sleep Stage Classification
Correctly classifying different sleep stages is a critical and prerequisite step in diagnosing sleep-related issues. In practice, the clinical experts must manually review the polysomnography (PSG) recordings to classify sleep stages. Such a procedure is time-consuming, laborious, and potentially prone to human subjective errors. Deep learning-based methods have been successfully adopted for automatically classifying sleep stages in recent years. However, they cannot simply say “I do not know” when they are uncertain in their predictions, which may easily create significant risk in clinical applications, despite their good performance. To address this issue, we propose a deep model, named TrustSleepNet, which contains evidential learning and cross-modality attention modules. Evidential learning predicts the probability density of the classes, which can learn an uncertainty score and make the prediction trustable in real-world clinical applications. Cross-modality attention adaptively fuses multimodal PSG data by enhancing the significant ones and suppressing irrelevant ones. Experimental results demonstrate that TrustSleepNet outperforms state-of-the-art benchmark methods, and the uncertainty score makes the prediction more trustable and reliable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BEBOP: Bidirectional dEep Brain cOnnectivity maPping Stabilizing Skeletal Pose Estimation using mmWave Radar via Dynamic Model and Filtering Behavioral Data Categorization for Transformers-based Models in Digital Health Gender Difference in Prognosis of Patients with Heart Failure: A Propensity Score Matching Analysis Influence of Sensor Position and Body Movements on Radar-Based Heart Rate Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1